Registration Dossier

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Study period:
8-23 January 2017
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2017
Report Date:
2017

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Version / remarks:
Adopted July 21,1997
Deviations:
no
Qualifier:
according to
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Version / remarks:
31 May 2008
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

Reference
Name:
Unnamed
Type:
Constituent
Test material form:
solid: particulate/powder
Remarks:
white to brownish
Details on test material:
Batch 151222

Method

Species / strain
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Additional strain / cell type characteristics:
other:
Remarks:
S. typhimurium strains are histidine-requiring, E. coli strain is tryptophan-requiring
Metabolic activation:
with and without
Metabolic activation system:
S9-mix (rat liver S9-mix induced Aroclor 1254)
Test concentrations with justification for top dose:
Selection of an adequate range of doses was based on a dose range finding test with the strains TA100 and the WP2uvrA, both with and without S9-mix. Eight concentrations, 1.7, 5.4, 17, 52, 164, 512, 1600 and 5000 μg/plate were tested in triplicate.
Based on the results of the dose range finding test, the following dose range was selected for the mutation assay with the tester strains, TA1535, TA1537 and TA98 in the absence and presence of S9-mix: 17, 52, 164, 512, 1600 and 5000 μg/plate.
Vehicle / solvent:
Dimethyl sulfoxide
Controls
Untreated negative controls:
yes
Remarks:
Vehicle control used as negative control
Negative solvent / vehicle controls:
yes
Remarks:
The vehicle of the test item was dimethyl sulfoxide (Merck, Darmstadt, Germany).
True negative controls:
no
Positive controls:
yes
Positive control substance:
4-nitroquinoline-N-oxide
2-nitrofluorene
sodium azide
methylmethanesulfonate
other: ICR-191 (Sigma) 2-aminoanthracene
Details on test system and experimental conditions:
CH02906 was tested in the Salmonella typhimurium reverse mutation assay with four histidine- requiring strains of Salmonella typhimurium (TA1535, TA1537, TA100 and TA98) and in the Escherichia coli reverse mutation assay with a tryptophan-requiring strain of Escherichia coli (WP2uvrA). The test was performed in two independent experiments, at first a direct plate assay was performed and secondly a pre-incubation assay both in the absence and presence of S9- mix (rat liver S9-mix induced Aroclor 1254).

Cell culture
Preparation of bacterial cultures:
Samples of frozen stock cultures of bacteria were transferred into enriched nutrient broth (Oxoid LTD, Hampshire, England) and incubated in a shaking incubator (37 ± 1°C, 150 rpm), until the cultures reached an optical density of 1.0 ± 0.1 at 700 nm (109 cells/ml). Freshly grown cultures of each strain were used for a test.
Agar plates:
Agar plates (ø 9 cm) contained 25 ml glucose agar medium. Glucose agar medium contained per liter: 18 g purified agar (Oxoid LTD) in Vogel-Bonner Medium E, 20 g glucose (Fresenius Kabi, Bad Homburg, Germany). The agar plates for the test with the Salmonella typhimurium strains also contained 12.5 μg/plate biotin (Merck) and 15 μg/plate histidine (Sigma) and the agar plates for the test with the Escherichia coli strain contained 15 μg/plate tryptophan (Sigma).
Top agar:
Milli-Q water containing 0.6% (w/v) bacteriological agar (Oxoid LTD) and 0.5% (w/v) sodium chloride (Merck) was heated to dissolve the agar. Samples of 3 ml top agar were transferred into 10 ml glass tubes with metal caps. Top agar tubes were autoclaved for 20 min at 121 ± 3°C.
Environmental conditions:
All incubations were carried out in a controlled environment at a temperature of 37.0 ± 1.0°C (actual range 33.2 – 39.1°C). The temperature was continuously monitored throughout the experiment. Due to addition of plates (which were at room temperature) to the incubator or due to opening and closing the incubator door, temporary deviations from the temperature may occur. Based on laboratory historical data these deviations are considered not to affect the study integrity.

Study design
1) Dose range finding test
Selection of an adequate range of doses was based on a dose range finding test with the strains TA100 and the WP2uvrA, both with and without S9-mix. Eight concentrations, 1.7, 5.4, 17, 52, 164, 512, 1600 and 5000 μg/plate were tested in triplicate.
The highest concentration of the test item used in the subsequent mutation assays was 5000 μg/plate. At least five different doses (increasing with approximately half-log steps) of the test item were tested in triplicate in each strain in the absence and presence of S9-mix. The first experiment was a direct plate assay and the second experiment was a pre-incubation assay.
The negative control (vehicle) and relevant positive controls were concurrently tested in each strain in the presence and absence of S9-mix.
2) First experiment: direct plate assay
The above mentioned dose range finding study with two tester strains is reported as a part of the direct plate assay. In the second part of this experiment, the test item was tested both in the absence and presence of S9-mix in the tester strains TA1535, TA1537 and TA98. Top agar in top agar tubes was melted by heating to 45 ± 2°C. The following solutions were successively added to 3 ml molten top agar: 0.1 ml of a fresh bacterial culture (109 cells/ml) of one of the tester strains, 0.1 ml of a dilution of the test item in DMSO and either 0.5 ml S9-mix (in case of activation assays) or 0.5 ml 0.1 M phosphate buffer (in case of non-activation assays). The ingredients were mixed on a Vortex and the content of the top agar tube was poured onto a selective agar plate. After solidification of the top agar, the plates were inverted and incubated in the dark at 37.0 ± 1.0°C for 48 ± 4 h. After this period revertant colonies (histidine independent (His+) for Salmonella typhimurium bacteria and tryptophan independent (Trp+) for Escherichia coli) were counted.
3) Second experiment: pre-incubation assay
The test item was tested both in the absence and presence of S9-mix in all tester strains. Top agar in top agar tubes was melted by heating to 45 ± 2°C. The following solutions were pre-incubated for 30 minutes by 70 rpm at 37°C, either 0.5 ml S9-mix (in case of activation assays) or 0.5 ml 0.1 M phosphate buffer (in case of non-activation assays), 0.1 ml of a fresh bacterial culture (109 cells/ml) of one of the tester strains, 0.1 ml of a dilution of the test item in DMSO. After the pre-incubation period the solutions were added to 3 ml molten top agar. The ingredients were mixed on a Vortex and the content of the top agar tube was poured onto a selective agar plate. After solidification of the top agar, the plates were inverted and incubated in the dark at 37.0 ± 1.0°C for 48 ± 4 h. After this period revertant colonies (histidine independent (His+) for Salmonella typhimurium bacteria and tryptophan independent (Trp+) for Escherichia coli) were counted.
4) Colony counting
The revertant colonies were counted automatically with the Sorcerer Colony Counter. Plates with sufficient test item precipitate to interfere with automated colony counting were counted manually. Evidence of test item precipitate on the plates and the condition of the bacterial background lawn were evaluated when considered necessary, macroscopically and/or microscopically by using a dissecting microscope.
Evaluation criteria:
A Salmonella typhimurium reverse mutation assay and/or Escherichia coli reverse mutation assay is considered acceptable if it meets the following criteria:
a) The vehicle control and positive control plates from each tester strain (with or without S9-mix) must exhibit a characteristic number of revertant colonies when compared against relevant historical control data generated at Charles River Den Bosch.
b) The selected dose range should include a clearly toxic concentration or should exhibit limited solubility as demonstrated by the preliminary toxicity range-finding test or should extend to 5 mg/plate.
c) No more than 5% of the plates are lost through contamination or some other unforeseen event. If the results are considered invalid due to contamination, the experiment will be repeated.

A test item is considered positive (mutagenic) in the test if:
a) The total number of revertants in tester strain TA100 or WP2uvrA is greater than two (2) times the concurrent control, or the total number of revertants in tester strains TA1535, TA1537 or TA98 is greater than three (3) times the concurrent control.
b) Incasearepeatexperimentisperformedwhenapositiveresponseisobservedinoneofthe tester strains, the positive response should be reproducible in at least one follow up experiment.
Statistics:
/

Results and discussion

Test resultsopen allclose all
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
both in presence and absence of S9-mix
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
both in the absence and presence of S9-mix
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
only observed in the absence of S9-mix
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
not valid
Remarks:
Not valid in the absence of S9-mix
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
both in the absence and presence of S9-mix
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid

Applicant's summary and conclusion

Conclusions:
All bacterial strains showed negative responses over the entire dose range, i.e. no significant dose-related increase in the number of revertants in two independently repeated experiments.
Based on the results of this study it is concluded that CH02906 is not mutagenic in the Salmonella typhimurium reverse mutation assay and in the Escherichia coli reverse mutation assay.
Executive summary:

All bacterial strains showed negative responses over the entire dose range, i.e. no significant dose-related increase in the number of revertants in two independently repeated experiments.

The negative control values were within the laboratory historical control data ranges.

The strain-specific positive control values were within the laboratory historical control data ranges indicating that the test conditions were adequate and that the metabolic activation system functioned properly, except the response for TA1537 in the absence of S9-mix in the first experiment. The purpose of the positive control is as a reference for the test system, where a positive response is required to check if the test system functions correctly. Since the value was more than 3 times greater than the concurrent solvent control values, this deviation in the mean plate count of the positive control had no effect on the results of the study.

Based on the results of this study it is concluded that CH02906 is not mutagenic in theSalmonella typhimuriumreverse mutation assay and in theEscherichia colireverse mutation assay.