Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Ecotoxicological information

Short-term toxicity to aquatic invertebrates

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
short-term toxicity to aquatic invertebrates
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR toolbox version.3.3 and QMRF report has been attached.
Qualifier:
according to guideline
Guideline:
other: Predicted data
Principles of method if other than guideline:
Prediction is done using QSAR Toolbox version 3.3 with log kow as the primary discriptors.
GLP compliance:
not specified
Specific details on test material used for the study:
- Name of test material: 4-Hydroxyphenylacetic Acid
- IUPAC name: 4-Hydroxyphenylacetic Acid
- Molecular formula: C8H8O3
- Molecular weight: 152.148 g/mol
- Substance type: Organic
- Physical state: Solid
Analytical monitoring:
not specified
Vehicle:
not specified
Test organisms (species):
Daphnia magna
Test type:
static
Water media type:
freshwater
Limit test:
no
Total exposure duration:
48 h
Key result
Duration:
48 h
Dose descriptor:
EC50
Effect conc.:
268.187 mg/L
Nominal / measured:
estimated
Conc. based on:
test mat.
Basis for effect:
other: Intoxication
Remarks on result:
other: not toxic

The prediction was based on dataset comprised from the following descriptors: EC50
Estimation method: Takes average value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((((("a" or "b" or "c" or "d" )  and ("e" and ( not "f") )  )  and "g" )  and ("h" and ( not "i") )  )  and "j" )  and ("k" and ( not "l") )  )  and ("m" and ( not "n") )  )  and "o" )  and "p" )  and ("q" and "r" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Phenols (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Class 2 (less inert compounds) by Acute aquatic toxicity classification by Verhaar (Modified)

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Acid moiety AND Phenols by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide Side Chain OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR SN1 OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN2 OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Geminal Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS v.1.3

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD ONLY

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Moderate binder, NH2 group OR Moderate binder, OH grooup OR Non binder, impaired OH or NH2 group OR Non binder, non cyclic structure OR Non binder, without OH or NH2 group OR Strong binder, OH group OR Very strong binder, OH group OR Weak binder, NH2 group by Estrogen Receptor Binding

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Class 2 (less inert compounds) by Acute aquatic toxicity classification by Verhaar (Modified) ONLY

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Non-Metals by Groups of elements

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Halogens by Groups of elements

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Group 14 - Carbon C AND Group 16 - Oxygen O by Chemical elements

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Group 15 - Nitrogen N by Chemical elements

Domain logical expression index: "o"

Similarity boundary:Target: OC(=O)Cc1ccc(O)cc1
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Aromatic compound AND Carbonic acid derivative AND Carboxylic acid AND Carboxylic acid derivative AND Hydroxy compound AND Phenol by Organic functional groups, Norbert Haider (checkmol) ONLY

Domain logical expression index: "q"

Parametric boundary:The target chemical should have a value of log Kow which is >= 0.599

Domain logical expression index: "r"

Parametric boundary:The target chemical should have a value of log Kow which is <= 1.39

Conclusions:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the closest read across substances, the toxicity to aquatic invertebrate was predicted 4-Hydroxyphenylacetic Acid (CAS: 156-38-7). EC50 Intoxication value was estimated to be 268.1873 mg/l for Daphnia magna for 48.0 hrs duration. It was concluded that 4-Hydroxyphenylacetic Acid (CAS: 156-38-7) was likely to be not toxic to aquatic invertebrate.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the closest read across substances, the toxicity to aquatic invertebrate was predicted 4-Hydroxyphenylacetic Acid (CAS: 156-38-7). EC50 Intoxication value was estimated to be 268.1873 mg/l for Daphnia magna for 48.0 hrs duration. It was concluded that 4-Hydroxyphenylacetic Acid (CAS: 156-38-7) was likely to be not toxic to aquatic invertebrate.

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the closest read across substances, the toxicity to aquatic invertebrate was predicted 4-Hydroxyphenylacetic Acid (CAS: 156-38-7). EC50 Intoxication value was estimated to be 268.1873 mg/l for Daphnia magna for 48.0 hrs duration. It was concluded that 4-Hydroxyphenylacetic Acid (CAS: 156-38-7) was likely to be not toxic to aquatic invertebrate.

Key value for chemical safety assessment

Fresh water invertebrates

Fresh water invertebrates
Effect concentration:
268.187 mg/L

Additional information

Following studies of target chemical and structurally similar read across includes predicted data and experimental data to conclude the toxicity extent of 4-Hydroxyphenylacetic Acid (CAS: 156-38-7). towards aquatic inverbrate is summarized as follows:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the closest read across substances, the toxicity to aquatic invertebrate was predicted 4-Hydroxyphenylacetic Acid (CAS: 156-38-7). EC50 Intoxication value was estimated to be 268.1873 mg/l for Daphnia magna for 48.0 hrs duration. It was concluded that 4-Hydroxyphenylacetic Acid (CAS: 156-38-7) was likely to be not toxic to aquatic invertebrate.

The above prediction for the target chemical Based on the prediction done by EPI suite, ECOSAR version 1.1, on the basis of similarity of structure to chemicals for which the aquatic toxicity has been previously measured by structure-activity relationships (SARs) program, the LC 50 value for short term toxicity to aquatic invertebrates was predicted.

On the basis of this program, the LC 50 value for short term toxicity to aquatic invertebrates was predicted to be 566.917 mg/l for4-Hydroxyphenylacetic Acid (CAS: 156-38-7)in 48 hrs. Based on this value it can be concluded that the substance is considered to be not toxic to aquatic environment and can be "not classified" category as per the criteria mentioned in CLP regulation.

Similar estimation Based on the average value of both models ( Leadscope Enterprise model and SciMatics SciQSAR model), the result were predicted in Battery model. Based on the Danish (Q)SAR Database, the 48 hours EC50 was estimated to be 57.43105 mg/Lon Daphnia Magna for 4-Hydroxyphenylacetic Acid (CAS: 156-38-7)with immobilization effects. Thus based on this value it can be concluded that the substance can be classified as"not classified"as per the criteria of CLP regulation.

The above predicted data of target chemical is supported by the experimental study of structurally similar read across 4-methoxyphenylacetic acid (CAS No. 104-01-8) from the ABITEC Lab report 2017, suggests that the Determination of the inhibition of the mobility of the crustacean Thamnocephalus platyurus was carried out for 24 h under static condition.

Immobilization effect was maesured duroing the test . The Effective concentration (EC50) value of phenylacetic acid in aquatic invetebrate (Thamnocephalus platyurus) in a 24 hr study on immobility effect was found to be 236 mg/L.Thus,considering the CLP Criteria for aquatic classification of the substance , it is concluded that phenylacetic acid does not exhibit short term toxicity to aquatic invertebrate (Thamnocephalus platyurus).

Another supporting experimental study for the structurally similar read across phenylacetic acid (CAS: 103-82-2) from the publication Chemosphere 2003, also suggests that the Determination of the inhibition of the mobility of Daphnids was carried out with the substance4-methoxyphenylacetic acidaccording to OECD Guideline 202.

The stock solution 150.0 mg/L was prepared by dissolving white powder in reconstituted water. The solution was kept in ultrasonic bath for 20 min. The test solutions of required concentrations were prpared by mixing the stock solution of the test sample in reconstituted water.The test substance was tested at the concentrations 0, 30.0, 45.0, 67.5, 100.0 and 150.0 mg/L.The test was performed under static conditions in a fresh water system at a temperature of 20°C. EC50 was calculated using non linear regression by the software Prism 4.0.

The median effective concentration (EC50) for the test substance,4-methoxyphenylacetic acid, in Daphnia magna was determined to be 100.8 mg/L for immobilisation effects with 95% CI of 94.7 to 107.4 mg/L. Thus, based on this EC50 value and after comparing with CLP criteria for aquatic classification of the substance it is concluded that the substance,4-methoxyphenylacetic aciddoes not exhibit short term toxicity to aquatic invertebrate (Daphnia Magna).

Thus based on the effect concentrations which is in the range 57.43105 mg/L to566.917 mg/lgive the conclusion that test substance 4-Hydroxyphenylacetic Acid (CAS: 156-38-7) is likely to be not toxic to aquatic environment at environmentally relevant concentrations and applying weight of evidence approach it can be considered to be “not classified” as per the CLP classification criteria.