Registration Dossier

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

It is concluded that Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -13 -branched alkyl esters will not accumulate in the body.

Additional information

The BCFBAF version 3.01 programme of the EPI Suite software (v 4.10) was used to predict either a log BCF of 2.19 (BCF of 153 L/kg wet-wt) (linear C12 -component), 2.26 (BCF 181 L/kg wet-wet) (branched C12 -component), 1.78 (BCF 59.7 L/kg wet-wt) based on a regression estimate or a log BAF of - 0.01 (BAF of 0.966 L/kg wet-wt) (linear C12 -component), log BAF -0.01 (BAF = 0.972 L/kg wet-wt) (C12 -branched component), log BAF -0.04 (BAF = 0.91 L/kg wet-wt) (C13 -branched component) based on the Arnot-Gobas upper trophic model both using the smiles codes of Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -linear alkyl esters, Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -branched alkyl esters and Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C13 -branched alkyl ester representing Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -13 -branched alkyl ester. Because the Arnot-Gobas upper trophic model takes also into account metabolism of the substance by the organism it is lower. The QSAR-data are supported by the results of the pharmacokinetics. Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -13 -branched alkyl esters will be hydrolysed, absorbed and efficiently metabolised into water soluble metabolites, which is supported by the molecular structure of Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -13 -branched alkyl esters and its physico-chemical properties.

It is concluded that Butanedioic acid, 2,3 -dihydroxy-[R-(R*,R*)]-C12 -13 -branched alkyl esters will not accumulate in the body.