Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 310-288-2 | CAS number: 161907-78-4 A complex mixture of oxygenated hydrocarbons produced by the distillation of residues from the manufacture of ethylene glycol monoethyl ether. It consists predominantly of a mixture of di-, tri-, tetra- and pentaethylene glycol monoethyl ethers having carbon numbers predominantly in the range C6 to C12 and boiling in the range of approximately 200°C to 300°C (392°F to 572°F).
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Short description of key information on absorption rate:
Permeability co-efficient: 24 +/-0.9ug/cm2/hr
Key value for chemical safety assessment
Additional information
No metabolism or toxicokinetic data is available for this UVCB substance. The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acid. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected in vivo. Methoxy acetic acid, a metabolite of ethylene glycol methyl ether, is a known testicular toxicant in rats, and butoxyacetic acid, a metabolite of ethylene glycol butyl ether, causes hemolysis of rodent red blood cells. The principal metabolite of of the two main components of this substance, 3,6,9,12-tetraoxatetradecan-1-ol and 2-(2-(2-ethoxyethoxy)ethoxy)ethanol, are believed to be 3,6,9,12-tetraoxatetradecanoic acid and 2-(2-(2-ethoxyethoxy)ethoxy)ethoxy acetic acid, neither of which is expected to have any adverse toxicological properties. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies, it does not appear to contribute to the toxicity of glycol ethers. Some glycol ethers have been shown to undergo conjugation with sulfate and glucuronic acid, and the alkoxyacetic acid metabolites may conjugate with glycine (rodents) or glutamine (humans). Conjugation is regarded as a pathway of detoxification.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.