Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 247-978-7 | CAS number: 26761-42-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
The fate of potassium neodecanoate in the environment is most accurately evaluated by separately assessing the fate of its moieties potassium and neodecanoate. In the assessment of environmental fate and behaviour of potassium neodecanoate, data available for the potassium cation and the neodecanoate anion indicate that abiotic and biotic degradation in respective compartments do not contribute significantly to its fate in the environment.
Potassium:
Biotic degradation is not relevant for metals and metal compounds. Potassium as an element is not considered to be (bio)degradable.
Transport and distribution: Dissolved potassium occurs in solution as dissociated K+ ions. Although K is an abundant element, its mobility in soils, sediments and suspended matteris limited since it is readily incorporated into clay lattices and it is adsorbed more strongly than Na+ to the surfaces of clay minerals and organic matter (Salminen, 2005). A European median log Kp value of 3.99 L/kg is derived for sediment-water partitioning.
Neodecanoic acid:
Abiotic degradation is not considered to significantly affect the environmental fate of neodecanoic acid since neodecanoic acid is lacking hydrolysable functional groups and does not absorb light within a range of 290 to 750 nm.
Biotic degradation: Neodecanoic acid is not readily biodegradable (11% biodegradation in 28 d) based on results from a standard OECD ready biodegradation test. Studies are not available to assess the biodegradability of neodecanoic acid under simulated conditions or in soil, but given the limited biodegradation in water, biodegradation under simulated conditions, or in soil is not expected to occur to a great extent.
Transport and distribution: The estimated Koc of neodecanoic acid is 121 and may be sensitive to pH. The vapor pressure is very low, i.e. 0.65 Pa suggesting a limited volatilization from soil. Henry’s Law constant for neo-decanoic acid is calculated with 0.54 Pa-m3/mole at 25 °C indicating that volatilization from water is not expected to occur at a rapid rate, but may occur. Neodecanoic acid is a weak organic acid with an estimated dissociation constant (pKa) of 4.69. Consequently, neodecanoic acid, at neutral pH, typical of most natural surface waters, is expected to dissociate to the ionised form and therefore to remain largely in water.
Additional information
Read across
Metal carboxylates are substances consisting of a metal cation and a carboxylic acid anion. Based on the solubility of potassium neodecanoate in water, a complete dissociation of potassium neodecanoate resulting in potassium cations and neodecanoate anions may be assumed under environmental conditions. The respective dissociation is reversible, and the ratio of the salt /dissociated ions is dependent on the metal-ligand dissociation constant of the salt, the composition of the solution and its pH.
A metal-ligand complexation constant of potassium neodecanoate could not be identified. Data for alkaline earth metals appear to be generally limited. However, alkaline earth metals tend to form complexes with ionic character as a result of their low electronegativity. Further, the ionic bonding of alkaline earth metals is typically described as resulting from electrostatic attractive forces between opposite charges, which increase with decreasing separation distance between ions. Thus, it may reasonably be assumed that the behaviour of the dissociated potassium cations and neodecanoate anions in the environment determine the fate of potassium neodecanoate upon dissolution with regard to (bio)degradation, bioaccumulation, partitioning resulting in a different relative distribution in environmental compartments (water, air, sediment and soil) and subsequently its ecotoxicological potential.
Thus, in the assessment of environmental fate and pathways of potassium neodecanoate, read-across to the assessment entities neodecanoate and soluble potassium substances is applied since the individual ions of potassium neodecanoate determine its environmental fate. Since potassium ions and neodecanoate ions behave differently in the environment, regarding their fate and toxicity, a separate assessment of each assessment entity is performed. Please refer to the data as submitted for each individual assessment entity. For a documentation and justification of that approach, please refer to the separate document attached to section 13, namely Read Across Assessment Report for potassium neodecanoate
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
