Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 701-284-5 | CAS number: 2137881-70-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- PNEC aqua (freshwater)
- PNEC value:
- 1 mg/L
- Assessment factor:
- 100
- Extrapolation method:
- assessment factor
Marine water
- Hazard assessment conclusion:
- PNEC aqua (marine water)
- PNEC value:
- 0.1 mg/L
- Assessment factor:
- 1 000
- Extrapolation method:
- assessment factor
STP
- Hazard assessment conclusion:
- PNEC STP
- PNEC value:
- 7.2 mg/L
- Assessment factor:
- 10
- Extrapolation method:
- assessment factor
Sediment (freshwater)
- Hazard assessment conclusion:
- PNEC sediment (freshwater)
- PNEC value:
- 3.505 mg/kg sediment dw
- Extrapolation method:
- equilibrium partitioning method
Sediment (marine water)
- Hazard assessment conclusion:
- PNEC sediment (marine water)
- PNEC value:
- 0.351 mg/kg sediment dw
- Extrapolation method:
- equilibrium partitioning method
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- PNEC soil
- PNEC value:
- 0.241 mg/kg soil dw
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- no potential for bioaccumulation
Additional information
An overall weight of evidence approach is proposed for derivation of PNECs. For each environmental/ecotoxicological compartment the lowest PNEC has been chosen as derived for each of the read across substances. This will ensure a conservative and worst case approach in all cases as for each compartment the lowest avilable PNEC for the key read across substances will stand as the overall surrogate worst case PNEC for reaction mass of 2,2-bis(formyloxymethyl)propane-1,3-diyl diformate and formic acid.
Data from formate ions (which are formed when formic acid dissociates in water) are also used as the substance is considered to be analogous to formic acid for the purposes of ecotoxicology testing. Studies conducted using di-pentaerythritol are also used as di-pentaerythritol is considered to be analogous to pentaerythritol as it has a similar level of toxicity to aquatic species, both have low log Kow values and are largely of the same structure.
In the chemical safety assessment performed according to Article 14(3) in connection with Annex I section 3 (Environmental Hazard Assessment) no hazard was identified. Therefore according to REACH Annex I (5.0) exposure estimation is not necessary.
Conclusion on classification
No classification is triggered based on the available data, according to EEC directive 79/831/EEC Annex VI, Part II (D) as described in Commission Directive 93/21/EEC or regulation (EC) No 1272/2008. No hazards for the environment have been identified.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.