Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 947-973-6 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2018
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 018
- Report date:
- 2018
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- July 21, 1997
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- 31 May 2008
- Deviations:
- no
- GLP compliance:
- yes
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Barium fluoride, Strontium fluoride, europium doped
- EC Number:
- 947-973-6
- Molecular formula:
- Ba0.9-0.95. F2. Sr0.05-0.10 . Eu0.001-0.003
- IUPAC Name:
- Barium fluoride, Strontium fluoride, europium doped
Constituent 1
Method
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Remarks:
- E. coli WP2uvrA
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9-mix
- Test concentrations with justification for top dose:
- Dose-range finding test: Eight concentrations, 1.7, 5.4, 17, 52, 164, 512, 1600 and 5000 μg/plate
First mutation experiment: 52, 164, 512, 1600 and 5000 μg/plate., based on the results of the dose-range finding test.
Second mutation experiment: 52, 164, 512, 1600 and 5000 μg/plate., based on the results of the dose-range finding test. - Vehicle / solvent:
- The vehicle of the test item was Milli-Q water (Millipore Corp., Bedford, MA., USA).
Controlsopen allclose all
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 2-nitrofluorene
- sodium azide
- methylmethanesulfonate
- other: Acridine Mutagen ICR 191
- Remarks:
- without metabolic activation
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- other: 2-aminoanthracene
- Remarks:
- with metabolic activation
- Details on test system and experimental conditions:
- Cell Culture
Preparation of bacterial cultures: Samples of frozen stock cultures of bacteria were transferred into enriched nutrient broth (Oxoid LTD, Hampshire, England) and incubated in a shaking incubator (37 ± 1°C, 150 rpm), until the cultures reached an optical density of 1.0 ± 0.1 at 700 nm (10^9 cells/ml). Freshly grown cultures of each strain were used for a test.
Agar plates: Agar plates (ø 9 cm) contained 25 ml glucose agar medium. Glucose agar medium contained per liter: 18 g purified agar (Oxoid LTD) in Vogel-Bonner Medium E, 20 g glucose (Fresenius Kabi, Bad Homburg, Germany). The agar plates for the test with the Salmonella typhimurium strains also contained 12.5 μg/plate biotin (Merck) and 15 μg/plate histidine (Sigma) and the agar plates for the test with the Escherichia coli strain contained 15 μg/plate tryptophan (Sigma).
Top agar: Milli-Q water containing 0.6% (w/v) bacteriological agar (Oxoid LTD) and 0.5% (w/v) sodium chloride (Merck) was heated to dissolve the agar. Samples of 3 ml top agar were transferred into 10 ml glass tubes with metal caps. Top agar tubes were autoclaved for 20 min at 121 ± 3°C.
Environmental conditions: All incubations were carried out in a controlled environment at a temperature of 37.0 ± 1.0°C (actual range 34.5 - 39.0 °C). The temperature was continuously monitored throughout the experiment. Due to addition of plates (which were at room temperature) to the incubator or due to opening and closing the incubator door, temporary deviations from the temperature may occur. Based on laboratory historical data these deviations are considered not to affect the study integrity.
Metabolic Activation System
S9-Fraction: Rat liver microsomal enzymes (S9 homogenate) were obtained from Trinova Biochem GmbH, Giessen, Germany and were prepared from male Sprague Dawley rats that had been injected intraperitoneally with Aroclor 1254 (500 mg/kg body weight).
Each S9 batch was characterized with the mutagens benzo-(a)-pyrene (Sigma) and 2-aminoanthracene, which require metabolic activation, in tester strain TA100 at concentrations of 5 μg/plate and 2.5 μg/plate, respectively.
Preparation of S9-Mix: S9-mix was prepared immediately before use and kept on ice. S9-mix contained per 10 ml: 30 mg NADP (Randox Laboratories Ltd., Crumlin, United Kingdom) and 15.2 mg glucose-6-phosphate (Roche Diagnostics, Mannheim, Germany) in 5.5 ml Milli-Q water (Millipore Corp., Bedford, MA., USA); 2 ml 0.5 M sodium phosphate buffer pH 7.4; 1 ml 0.08 M MgCl2 solution (Merck); 1 ml 0.33 M KCl solution (Merck). The above solution was filter (0.22 μm)-sterilized. To 9.5 ml of S9-mix components 0.5 ml S9-fraction was added (5% (v/v) S9-fraction) to complete the S9-mix.
TEST DESIGN
Dose-range Finding Test
Selection of an adequate range of doses was based on a dose-range finding test with the strains TA100 and WP2uvrA, both with and without 5% (v/v) S9-mix. Eight concentrations, 1.7, 5.4, 17, 52, 164, 512, 1600 and 5000 µg/plate were tested in triplicate. The highest concentration of CH02886 used in the subsequent mutation assays was 5000µg/plate. At least five different doses (increasing with approximately half-log steps) of the test item were tested in triplicate in each strain in the absence and presence of S9-mix.
Mutation Assay
The first experiment was a direct plate assay and the second experiment was a pre-incubation assay.
- Direct plate assay
The above mentioned dose-range finding study with two tester strains is reported as a part of the direct plate assay. In the second part of this experiment, the test item was tested both in the absence and presence of S9-mix in the tester strains TA1535, TA1537 and TA98. Top agar in top agar tubes was melted by heating to 45 ± 2°C. The following solutions were successively added to 3 mL molten top agar: 0.1 mL of a fresh bacterial culture
(109 cells/mL) of one of the tester strains, 0.1 or 0.2 mL of a dilution of the test item in
Milli-Q water (see study plan deviation) and either 0.5 ml S9-mix (in case of activation assays) or 0.5 mL 0.1 M phosphate buffer (in case of non-activation assays). The ingredients were mixed on a Vortex and the content of the top agar tube was poured onto a selective agar plate. After solidification of the top agar, the plates were inverted and incubated in the dark at 37.0 ± 1.0°C for 48 ± 4 h. After this period revertant colonies (histidine independent (His+) for Salmonella typhimurium bacteria and tryptophan independent (Trp+) for Escherichia coli) were counted.
- Pre-incubation assay
The test item was tested both in the absence and presence of S9-mix in all tester strains. Top agar in top agar tubes was melted by heating to 45 ± 2°C. The following solutions were
pre-incubated for 30 ± 2 minutes by 70 rpm at 37 ± 1°C, either 0.5 mL S9-mix (in case of activation assays) or 0.5 mL 0.1 M phosphate buffer (in case of non-activation assays),
0.1 mL of a fresh bacterial culture (109 cells/mL) of one of the tester strains, 0.1 mL of a dilution of the test item in Milli-Q water. After the pre-incubation period the solutions were added to 3 mL molten top agar. The ingredients were mixed on a Vortex and the content of the top agar tube was poured onto a selective agar plate. After solidification of the top agar, the plates were inverted and incubated in the dark at 37.0 ± 1.0°C for 48 ± 4 h. After this period revertant colonies (histidine independent (His+) for Salmonella typhimurium bacteria and tryptophan independent (Trp+) for Escherichia coli) were counted.
Colony Counting
The revertant colonies were counted automatically with the Sorcerer Colony Counter. Plates with sufficient test item precipitate to interfere with automated colony counting were counted manually. Evidence of test item precipitate on the plates and the condition of the bacterial background lawn were evaluated when considered necessary, macroscopically and/or microscopically by using a dissecting microscope. - Rationale for test conditions:
- Guideline test conditions.
- Evaluation criteria:
- In addition to the criteria stated below, any increase in the total number of revertants should be evaluated for its biological relevance including a comparison of the results with the historical control data range.
A test item is considered negative (not mutagenic) in the test if:
a) The total number of revertants in tester strain TA100 or WP2uvrA is not greater than two (2) times the concurrent control, and the total number of revertants in tester strains TA1535, TA1537 or TA98 is not greater than three (3) times the concurrent control.
b) The negative response should be reproducible in at least one follow up experiment.
A test item is considered positive (mutagenic) in the test if:
a) The total number of revertants in tester strain TA100 or WP2uvrA is greater than two (2) times the concurrent control, or the total number of revertants in tester strains TA1535, TA1537 or TA98 is greater than three (3) times the concurrent control.
b) In case a repeat experiment is performed when a positive response is observed in one of the tester strains, the positive response should be reproducible in at least one follow up experiment. - Statistics:
- No formal hypothesis testing was done.
Results and discussion
Test resultsopen allclose all
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Additional information on results:
- First Experiment: Direct Plate Assay
Precipitation of CH02886 on the plates was not observed at the start or at the end of the incubation period in any tester strain.
No reduction of the bacterial background lawn.
Second Experiment: Pre-Incubation Assay
Precipitation of CH02886 on the plates was not observed at the start or at the end of the incubation period.
Cytotoxicity, as evidenced by a reduction of the bacterial background lawn, was observed in all tester strains in the absence and presence of S9-mix at test item concentrations of 164 µg/mL and above.
There was no biologically relevant decrease in the number of revertants at any of the concentrations tested in all tester strains in the absence and presence of S9-mix.
In tester strain TA1537, fluctuations in the number of revertant colonies below the laboratory historical control data range were observed in the presence of S9-mix. However, since no dose-relationship was observed, these reductions are not considered to be caused by toxicity of the test item. It is more likely these reductions are caused by an incidental fluctuation in the number of revertant colonies.
All bacterial strains showed negative responses over the entire dose-range, i.e. no significant dose-related increase in the number of revertants in two independently repeated experiments.
The negative control values were within the laboratory historical control data ranges.
The strain-specific positive control values were within the laboratory historical control data ranges indicating that the test conditions were adequate and that the metabolic activation system functioned properly, except the response for WP2uvrA in the absence of S9-mix in the second experiment. The purpose of the positive control is as a reference for the test system, where a positive response is required to check if the test system functions correctly. Since the value was more than 3 times greater than the concurrent solvent control values, this deviation in the mean plate count of the positive control had no effect on the results of the study.
Applicant's summary and conclusion
- Conclusions:
- In conclusion, based on the results of this study it is concluded that CH02886 is not mutagenic in the Salmonella typhimurium reverse mutation assay and in the Escherichia coli reverse mutation assay.
- Executive summary:
The objective of this study was to determine the potential of CH02886 and/or its metabolites to induce reverse mutations at the histidine locus in several strains of Salmonella typhimurium (S. typhimurium; TA98, TA100, TA1535, and TA1537), and at the tryptophan locus of Escherichia coli(E. coli) strain WP2uvrA in the presence or absence of an exogenous mammalian metabolic activation system (S9).
The test was performed in two independent experiments, at first a direct plate assay was performed and secondly a pre-incubation assay.
The study procedures described in this report were based on the most recent OECD and EC guidelines (OECD 471, EC 440/2008).
Batch /EJ of CH02886 was a white moist solid. The vehicle of the test item was Milli-Q water.
In the dose-range finding study, the test item was initially tested up to concentrations of 5000 µg/plate in the strains TA100 and WP2uvrA in the direct plate assay. CH02886 did not precipitate on the plates at this dose level. The bacterial background lawn was not reduced at any of the concentrations tested and no biologically relevant decrease in the number of revertants was observed. Results of this dose-range finding test were reported as part of the first mutation assay.
In the first mutation experiment, the test item was tested up to concentrations of
5000 µg/plate in the strains TA1535, TA1537 and TA98 in the direct plate assay. CH02886 did not precipitate on the plates at this dose level. The bacterial background lawn was not reduced at any of the concentrations tested and no biologically relevant decrease in the number of revertants was observed.In the second mutation experiment, the test item was tested up to concentrations of 5000 µg/plate in the tester strains TA1535, TA1537, TA98, TA100 and WP2uvrA in the pre-incubation assay. CH02886 did not precipitate on the plates at this dose level. Cytotoxicity, as evidenced by areduction of the bacterial background lawn, was observed in all tester strainsin the absence and presence of S9-mix.
In this study, acceptable responses were obtained for the negative and strain-specific positive control items indicating that the test conditions were adequate and that the metabolic activation system functioned properly.
The test item did not induce a significant dose-related increase in the number of revertant (His+) colonies in each of the four tester strains (TA1535, TA1537, TA98 and TA100) and in the number of revertant (Trp+) colonies in tester strain WP2uvrA both in the absence and presence of S9-metabolic activation. These results were confirmed in a follow-up experiment.
In conclusion, based on the results of this study it is concluded that CH02886 is not mutagenic in the Salmonella typhimurium reverse mutation assay and in the Escherichia coli reverse mutation assay.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.