Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 807-612-4 | CAS number: 1393645-32-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 01-10-2014 to 24-10-2015
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Guideline study performed under GLP. All relevant validity criteria were met.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
- Report date:
- 2015
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Remarks:
- inspected: March 2014; signature: May 2014
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- 1-(5-ethyl-5-methylcyclohex-1-en-1-yl)pent-4-en-1-one
- EC Number:
- 807-612-4
- Cas Number:
- 1393645-32-3
- Molecular formula:
- C14H22O
- IUPAC Name:
- 1-(5-ethyl-5-methylcyclohex-1-en-1-yl)pent-4-en-1-one
- Test material form:
- liquid
- Details on test material:
- - Physical state: Liquid
- Storage condition of test material: Refrigerated in the dark under nitrogen
- Other: clear colourless
Constituent 1
Method
Species / strainopen allclose all
- Species / strain / cell type:
- E. coli WP2 uvr A
- Additional strain / cell type characteristics:
- not applicable
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- Rat liver S9
- Test concentrations with justification for top dose:
- Experiment 1 (pre-incubation method): 0, 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate
Experiment 2 (pre-incubation method): 0, 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate
Up to eight test item dose levels were selected in Experiment 2 in order to achieve both a minimum of four non-toxic doses and the toxic/guideline limit of the test item. The dose levels were selected based on the results of Experiment 1.
Salmonella strain TA1537 (with and without S9-mix): 1.5, 5, 15, 50, 150, 500, 1500 μg/plate.
Salmonella strain TA98 and E.coli strain WP2uvrA (with and without S9-mix): 5, 15, 50, 150, 500, 1500, 5000 μg/plate.
Salmonella strains TA100 and TA1535 (with and without S9-mix): 0.5, 1.5, 5, 15, 50, 150, 500 μg/plate. - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: dimethyl sulphoxide (DMSO)
- Justification for choice of solvent/vehicle: The test item was immiscible in sterile distilled water at 50 mg/mL but was fully miscible in dimethyl sulphoxide at the same concentration in solubility checks performed. Dimethyl sulphoxide was selected as the vehicle.
- Other: Formulated concentrations were (if required) adjusted by an appropriate factor to allow for the stated purity of the test item.
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- benzo(a)pyrene
- other: 2-Aminoanthracene
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: Experiment 1. in medium; in agar (pre-incubation) ; Experiment 2. in medium; in agar (pre-incubation)
DURATION
- Exposure duration:
Experiment 1. 0.1 mL of the appropriate bacterial strain culture, 0.5 mL of phosphate buffer (or S9-activation mix, as applicable) and 0.1 mL of the test item formulation, solvent or 0.1 mL of appropriate positive control were incubated at 37 °C± 3 °C for 20 minutes (with shaking) prior to addition of 2 mL of amino-acid supplemented media and subsequent plating onto Vogel-Bonner plates. After setting, the plates were placed in anaerobic jars or bags (one jar/bag for each concentration of test item/vehicle) during the incubation procedure. All testing for this experiment was performed in triplicate. Concurrent negative controls were dosed using the standard plate incorporation method. All of the plates were incubated at 37 °C± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity).
Experiment 2. The procedure for incubation and duration was the same as in Experiment 1.
NUMBER OF REPLICATIONS: 3
DETERMINATION OF CYTOTOXICITY
- Method: relative total growth - Rationale for test conditions:
- In accordance with the relevant guidelines.
- Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out of historical range response (Cariello and Piegorsch, 1996)).
A test item is considered non-mutagenic (negative) in the test system if the above criteria are not met.
In instances of data prohibiting definitive judgement about test item activity are reported as equivocal. - Statistics:
- Statistical methods (Mahon, et al.); as recommended by the UKEMS Subcommittee on Guidelines for Mutagenicity Testing, Report - Part III (1989).
Results and discussion
Test resultsopen allclose all
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- See table 1 and 2
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- See table 1 and 2
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: all strains/cell types tested
Any other information on results incl. tables
Table 1 : Test Results: Experiment 1 with and without metabolic activation and results of concurrent positive controls
S9-Mix (-) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||
Base-pair substitution strains |
Frameshift strains |
|||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||
Solvent Control (DMSO) |
103 (92) 100 17.1# 72 |
12 (13) 13 0.6 13 |
12 (16) 20 4.0 17 |
20 (16) 15 3.6 13 |
13 (14) 9 5.6 20 |
|
1.5 µg |
79 (87) 95 8.0 87 |
12 (12) 12 0.0 12 |
17 (17) 17 0.0 17 |
16 (13) 12 2.6 11 |
12 (16) 19 3.6 17 |
|
5 µg |
95 (78) 79 17.5 60 |
11 (13) 11 2.9 16 |
17 (21) 21 3.5 24 |
16 (21) 23 4.0 23 |
12 (14) 15 1.7 15 |
|
15 µg |
78 (74) 74 4.5 69 |
8 (10) 7 4.9 16 |
17 (20) 31 9.5 13 |
15 (12) 11 2.3 11 |
9 (8) 8 1.0 7 |
|
50 µg |
59 (66) 69 5.8 69 |
15 (10) 3 6.4 13 |
17 (18) 17 1.7 20 |
8 (10) 11 1.7 11 |
5 (5) 4 0.6 5 |
|
150 µg |
65 (61) 67 8.7 51 |
7 S (10) 12 S 2.6 11 S |
28 (24) 25 4.0 20 |
7 (11) 11 3.5 14 |
7 (5) 4 1.7 4 |
|
500 µg |
82 S (68) 61 S 12.1 61 S |
17 S (10) 9 S 6.1 5 S |
21 (22) 29 7.0 15 |
17 (12) 9 4.2 11 |
7 (7) 4 3.5 11 |
|
1500 µg |
42 S (47) 49 S 4.7 51 S |
0 S (0) 0 S 0.0 0 S |
19 (22) 25 3.1 23 |
11 (12) 11 2.3 15 |
9 S (7) 8 S 2.6 4 S |
|
5000 µg |
52 S (52) 52 S 0.6 53 S |
0 V (0) 0 V 0.0 0 V |
27 (27) 20 6.5 33 |
19 (19) 20 0.6 19 |
5 S (5) 5 S 0.0 5 S |
|
Positive controls S9-Mix (-) |
Name Dose Level No. of Revertants |
ENNG |
ENNG |
ENNG |
4NQO |
9AA |
3 µg |
5 µg |
2 µg |
0.2 µg |
80 µg |
||
1070 (977) 887 91.5 974 |
2142 (2278) 2444 153.1 2249 |
795 (805) 760 51.3 861 |
176 (219) 259 41.6 222 |
775 (967) 1260 257.6 867 |
||
|
||||||
S9-Mix (+) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||
Base-pair substitution strains |
Frameshift strains |
|||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||
Solvent Control (DMSO) |
91 (98) 92 11.8# 112 |
12 (12) 15 3.5 8 |
19 (21) 21 2.5 24 |
17 (19) 19 2.0 21 |
17 (18) 20 1.7 17 |
|
1.5 µg |
95 (93) 100 8.2 84 |
11 (13) 17 3.2 12 |
17 (22) 28 5.6 21 |
16 (21) 27 5.6 20 |
11 (12) 11 1.2 13 |
|
5 µg |
91 (87) 82 4.6 88 |
8 (13) 13 4.5 17 |
27 (21) 15 6.0 20 |
15 (15) 11 4.0 19 |
16 (18) 15 4.9 24 |
|
15 µg |
87 (91) 87 6.9 99 |
17 (13) 17 6.9 5 |
9 (20) 25 9.9 27 |
23 (19) 20 4.0 15 |
17 (16) 11 4.2 19 |
|
50 µg |
96 (85) 80 9.5 79 |
4 (8) 8 4.0 12 |
20 (22) 20 4.0 27 |
11 (15) 13 4.7 20 |
15 (17) 12 5.7 23 |
|
150 µg |
63 (73) 86 11.9 69 |
8 (12) 16 4.0 13 |
11 (15) 19 4.0 15 |
13 (20) 21 7.0 27 |
9 (11) 12 1.5 11 |
|
500 µg |
82 S (85) 79 S 8.5 95 S |
9 S (8) 4 S 3.6 11 S |
27 (21) 17 5.3 19 |
23 (19) 15 4.0 19 |
15 (8) 7 6.1 3 |
|
1500 µg |
63 S (48) 43 S 12.9 39 S |
11 S (8) 4 S 3.5 8 S |
15 (18) 20 2.6 19 |
19 (22) 27 4.4 20 |
4 S (7) 11 S 3.5 7 S |
|
5000 µg |
75 S (78) 76 S 3.8 82 S |
12 S (13) 16 S 2.3 12 S |
29 (28) 23 4.2 31 |
29 (22) 23 7.0 15 |
12 S (6) 4 S 4.9 3 S |
|
Positive controls S9-Mix (+) |
Name Dose Level No. of Revertants |
2AA |
2AA |
2AA |
BP |
2AA |
1 µg |
2 µg |
10 µg |
5 µg |
2 µg |
||
1215 (1192) 1156 31.4 1204 |
154 (174) 203 25.5 166 |
226 (210) 192 17.1 212 |
227 (211) 204 13.9 202 |
394 (312) 314 82.5 229 |
Table 2 : Test Results: Experiment 2 with and without metabolic activation and results of concurrent positive controls
S9-Mix (-) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||
Base-pair substitution strains |
Frameshift strains |
|||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||
Solvent Control (DMSO) |
88 (76) 78 13.7# 61 |
21 (15) 9 6.0 16 |
17 (18) 23 5.0 13 |
23 (27) 31 4.0 27 |
12 (13) 19 5.1 9 |
|
0.5 µg |
69 (72) 80 6.7 68 |
9 (13) 15 3.5 15 |
N/T |
N/T |
N/T |
|
1.5 µg |
63 (75) 76 12.0 87 |
15 (16) 13 3.6 20 |
N/T |
N/T |
7 (13) 16 4.9 15 |
|
5 µg |
84 (79) 75 4.5 79 |
19 (17) 16 1.7 16 |
20 (24) 27 3.5 24 |
25 (24) 31 8.1 15 |
15 (16) 17 1.0 16 |
|
15 µg |
63 (74) 82 10.0 78 |
9 (14) 13 5.0 19 |
21 (16) 8 7.2 20 |
25 (20) 20 5.0 15 |
12 (12) 12 0.6 13 |
|
50 µg |
69 S (65) 59 S 5.3 67 S |
11 (9) 9 2.0 7 |
23 (25) 31 5.3 21 |
15 (18) 21 3.1 17 |
3 (5) 7 2.1 4 |
|
150 µg |
57 S (47) 45 S 9.2 39 S |
8 S (12) 15 S 3.5 12 S |
20 (20) 19 1.0 21 |
8 (11) 13 2.9 13 |
5 (8) 7 3.6 12 |
|
500 µg |
59 S (47) 47 S 12.0 35 S |
0 V (0) 0 V 0.0 0 V |
21 (22) 24 2.1 20 |
15 (18) 23 4.6 15 |
4 S (4) 4 S 0.0 4 S |
|
1500 µg |
N/T |
N/T |
21 (23) 24 1.5 23 |
12 (13) 11 3.2 17 |
0 V (0) 0 V 0.0 0 V |
|
5000 µg |
N/T |
N/T |
23 (24) 27 3.1 21 |
15 S (13) 15 S 3.5 9 S |
N/T |
|
Positive controls S9-Mix (-) |
Name Dose Level No. of Revertants |
ENNG |
ENNG |
ENNG |
4NQO |
9AA |
3 µg |
5 µg |
2 µg |
0.2 µg |
80 µg |
||
337 (410) 543 115.6 349 |
448 (322) 212 118.8 306 |
825 (900) 949 66.2 927 |
212 (225) 222 14.7 241 |
1608 (1187) 850 385.9 1103 |
||
|
||||||
S9-Mix (+) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||
Base-pair substitution strains |
Frameshift strains |
|||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||
Solvent Control (DMSO) |
90 (96) 103 6.7# 94 |
15 (17) 13 5.9 24 |
23 (27) 24 5.5 33 |
13 (17) 20 3.8 19 |
13 (16) 17 3.1 19 |
|
0.5 µg |
87 (82) 75 6.1 83 |
7 (11) 16 4.5 11 |
N/T |
N/T |
N/T |
|
1.5 µg |
82 (80) 74 4.9 83 |
9 (12) 13 3.1 15 |
N/T |
N/T |
16 (16) 20 3.5 13 |
|
5 µg |
78 (81) 87 4.9 79 |
13 (16) 19 3.1 17 |
21 (27) 35 7.2 25 |
24 (23) 24 2.3 20 |
8 (13) 19 5.6 12 |
|
15 µg |
78 (85) 98 11.0 80 |
9 (12) 16 3.5 12 |
20 (20) 16 4.0 24 |
23 (25) 25 2.0 27 |
15 (17) 23 5.7 12 |
|
50 µg |
92 (82) 88 13.4 67 |
15 (12) 9 3.0 12 |
33 (22) 17 9.2 17 |
17 (22) 29 6.2 20 |
23 (14) 7 8.1 13 |
|
150 µg |
76 S (73) 72 S 2.6 71 S |
9 (10) 11 1.2 11 |
25 (20) 19 5.0 15 |
15 (16) 24 7.5 9 |
12 (10) 15 5.7 4 |
|
500 µg |
68 S (59) 67 S 14.2 43 S |
8 S (8) 12 S 4.0 4 S |
15 (25) 29 9.1 32 |
24 (21) 17 3.5 21 |
7 (9) 11 2.0 9 |
|
1500 µg |
N/T |
N/T |
13 (14) 13 2.3 17 |
17 (13) 15 4.7 8 |
7 S (6) 1 S 5.0 11 S |
|
5000 µg |
N/T |
N/T |
24 (23) 21 2.1 25 |
11 (14) 15 3.1 17 |
N/T |
|
Positive controls S9-Mix (+) |
Name Dose Level No. of Revertants |
2AA |
2AA |
2AA |
BP |
2AA |
1 µg |
2 µg |
10 µg |
5 µg |
2 µg |
||
218 (261) 325 56.3 241 |
202 (189) 170 16.7 194 |
147 (158) 140 25.9 188 |
134 (153) 166 16.8 159 |
449 (508) 559 55.5 517 |
ENNG: N-ethyl-N'-nitro-N-nitrosoguanidine
4NQO: 4-Nitroquinoline-1-oxide
9AA: 9-Aminoacridine
BP: Benzo(a)pyrene
2AA: 2-Aminoanthracene
N/T: Not tested at this dose level
S: Sparse bacterial background lawn
T: Toxic, no bacterial background lawn
V: Very weak bacterial background lawn
#: Standard deviation
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results:
Negative
Under the conditions of this study the test item was considered to be non-mutagenic in the presence and absence of S9 activation. - Executive summary:
The study was performed to the requirements of OECD Guideline 471, EU Method B13/14, US EPA OCSPP 870.5100 and Japanese guidelines for bacterial mutagenicity testing under GLP, to evaluate the potential mutagenicity of the test item in a bacterial reverse mutation assay using S.typhimurium strains TA98, TA100, TA1535, TA1537 and E.coli strain WP2uvrA- in both the presence and absence of S-9 mix. The test strains were treated with the test substance using the Ames pre incubation method at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). Formulated concentrations were adjusted by an appropriate factor to allow for the stated purity of the test substance. The dose range for Experiment 1 was predetermined and was 1.5 to 5000 µg/plate. The experiment was repeated on a separate day using fresh cultures of the bacterial strains and fresh test item formulations. Eight test item dose levels were again selected in Experiment 2 in order to achieve both a minimum of four non-toxic dose levels and the toxic limit of the test item. The dose range was amended following the results of Experiment 1 and ranged between 0.5 and 5000 µg/plate, depending on bacterial strain type and presence or absence of S9-mix. The vehicle (dimethyl sulphoxide) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated. The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate. In the first mutation test, the test item induced a visible reduction in the growth of the bacterial background lawns of the tester TA100, TA1535 and TA1537 strains in both the presence and absence of S9-mix. No toxicity was noted to either Salmonella strain TA98 or Escherichia coli strain WP2uvrA at any test item dose level in either the absence or presence of S9-mix. Consequently, for the second mutation test the toxic limit was employed as the maximum dose concentration. Results from the second mutation test (pre-incubation method) confirmed the toxicity previously noted with weakened bacterial background lawns observed in TA100, TA1535 and TA1537 strains. The sensitivity of the bacterial tester strains to the toxicity of the test item varied slightly between strain type, exposures with or without S9 mix. No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix. There were no significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9 mix). It was concluded that, under the conditions of this assay, the test substance gave a negative, i.e. non-mutagenic response in S.typhimurium strains TA98, TA100, TA1535, TA1537 and E.coli strain WP2uvrA- in the presence and absence of S-9 mix.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.