Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 807-702-3 | CAS number: 3225-26-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- April to September 2015
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
- Report date:
- 2015
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 21 July 2015
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl benzoate
- EC Number:
- 807-702-3
- Cas Number:
- 3225-26-1
- Molecular formula:
- C16H22NO3
- IUPAC Name:
- 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl benzoate
- Test material form:
- solid: flakes
Constituent 1
- Specific details on test material used for the study:
- Batch No GP509, 95.7% purity.
Method
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 98
- Species / strain / cell type:
- S. typhimurium TA 100
- Species / strain / cell type:
- S. typhimurium TA 1535
- Species / strain / cell type:
- E. coli WP2 uvr A
- Metabolic activation:
- with
- Metabolic activation system:
- Test bacteria were also exposed to the test item in the presence of an appropriate metabolic activation system, which is a cofactor-supplemented post-mitochondrial S9 fraction.
The post-mitochondrial fraction (S9 fraction) was prepared by the Microbiological Laboratory of according to Ames et al. [1] and Maron and Ames [2]. The documentation of the preparation of this post-mitochondrial fraction is stored in the reagent notebook in the Microbiological Laboratory which is archived yearly. The composition of solution refers to a final volume of 1000 mL. - Test concentrations with justification for top dose:
- Based on the results of the preliminary tests, 100 mg/mL stock solution was prepared in DMF, which was diluted by serial dilutions in several steps to obtain the dosing formulations for lower doses. The maximum test concentration was 5000 μg test item/plate.
Examined concentrations in the Initial Mutation Test and Confirmatory Mutation Test were 5000, 1581, 500, 158.1, 50, 15.81, 5 and 1.581 μg/plate.
Examined concentrations in the Complementary Confirmatory Mutation Test (Salmonella typhimurium TA98, TA1535 and TA1537 strains without metabolic activation) were 500, 158.1, 50, 15.81, 5, 1.581, 0.5 and 0.1581 µg/plate.
- Vehicle / solvent:
- Based on the available information and the results of the solubility testing, DMF was selected as vehicle (solvent) of the study (the selected vehicle was compatible with the survival of the cells and the S9 activity using the pre-incubation method). The results of the Preliminary Compatibility Test are summarized in Table 6.
Controls
- Untreated negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- methylmethanesulfonate
- other: 4-nitro-1,2-phenylene-diamine
- Details on test system and experimental conditions:
- Procedure for Exposure in the Initial Mutation Test:
A standard plate incorporation procedure was performed as an Initial Mutation Test. Bacteria (cultured in Nutrient Broth No.2 as described in Section 5.3.6.) were exposed to the test item both in the presence and absence of an appropriate metabolic activation system.
Molten top agar was prepared and kept at 45°C. The equivalent number of minimal glucose agar plates (three plates per concentration and for each control) was properly labelled. The test item and other components were prepared freshly and added to the overlay (45°C).
Study code: 15/087-007M Final Report Page 25 of 57
The content of the tubes: top agar 2000 µL vehicle (solvent) or test item solution (or reference controls) 50 µL overnight culture of test strain 100 µL phosphate buffer (pH 7.4) or S9 mix 500 µL
This solution was mixed and poured on the surface of minimal agar plates. For activation studies, instead of phosphate buffer, 0.5 mL of the S9 mix was added to each overlay tube. The entire test consisted of non-activated and activated test conditions, with the addition of untreated, negative (solvent) and positive controls. After preparation, the plates were incubated at 37°C for 48±1 hours.
Procedure for Exposure in the Confirmatory Mutation Test and Complementary Confirmatory Mutation Test:
A pre-incubation procedure [1][2][5][6][7] was performed as a Confirmatory Mutation Test since in the Initial Mutation Test no positive effect was observed (see details in Section 6.). The same method was used in the Complementary Confirmatory Mutation Test.
Bacteria (cultured in Nutrient Broth No.2. as described in 5.3.6.) were exposed to the test item both in the presence and absence of an appropriate metabolic activation system. The equivalent number of minimal glucose agar plates was properly labelled. Molten top agar was prepared and kept at 45°C.
Before the overlaying, 50 µL of test item formulations or its vehicle (or positive reference controls or their solvent), 100 µL of the overnight culture of bacterial cells and the 0.5 mL of S9 mix (activated test conditions) or phosphate buffer pH 7.4 (nonactivated test conditions) were added into the appropriate tubes to provide direct contact between bacteria and the test item. These tubes (3 tubes per control and 3 tubes for each concentration level) were gently mixed and incubated for 20 min at 37ºC in a shaking incubator.
After the incubation period, 2 mL of molten top agar were added to the tubes, and then the content mixed and poured on the surface of minimal glucose agar plates. The entire test consisted of non-activated and activated test conditions, with the addition of untreated, negative and positive controls. After preparation, the plates were incubated at 37°C for 48±1 hours.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
Applicant's summary and conclusion
- Conclusions:
- The reported data of this mutagenicity assay show (see Appendix 2 to 6) that under the experimental conditions applied the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.
In conclusion, the test item 4-Hydroxy-TEMPO benzoate had no mutagenic activity in the examined bacterial strains under the test conditions of the study,
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
