Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 480-410-8 | CAS number: 13482-23-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
OECD TG 471 (Ames, Bact Mut): non-mutagenic without and with S9 mix (plate incorporation as well as preincubation modification)
OECD TG 473 (Chrom Abb V79): test substance is considered not to be clastogenic for mamalian cells in vitro
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- MArch - August 2006
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 1997
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Species / strain / cell type:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 mix of Aroclor 1254 induced rats
- Test concentrations with justification for top dose:
- 16, 50, 158, 500, 1581, 5000 µg/plate
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: sodium azide, nitrofurantoin, 4-nitro-1,2-phenylene diamine, mitomycin C, cumene hydroperoxide and 2-aminoanthracene
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Conclusions:
- Interpretation of results:
negative - Executive summary:
Doses up to and including 5000 µg per plate did not cause any bacteriotoxic effects. Total bacteria counts remained unchanged and no inhibition of growth was observed.
Evidence of mutagenic activity of the test item was not seen. No biologically relevant increase in the mutant count, in comparison with the negative controls, was observed.
The positive controls sodium azide, nitrofurantoin, 4-nitro-1,2-phenylene diamine, mitomycin C, cumene hydroperoxide and 2-aminoanthracene had a marked mutagenic effect, as was seen by a biologically relevant increase in mutant colonies compared to the corresponding negative controls.
Therefore, the test item was considered to be non-mutagenic without and with S9 mix in the plate incorporation as well as in the preincubation modification of the Salmonella/microsome test.- Endpoint:
- in vitro cytogenicity / chromosome aberration study in mammalian cells
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Study period:
- March - April 2008
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
- Version / remarks:
- 1997
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- in vitro mammalian chromosome aberration test
- Species / strain / cell type:
- Chinese hamster lung fibroblasts (V79)
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 mix of Aroclor 1254 induced rats
- Test concentrations with justification for top dose:
- 325, 650 and 1300 µg/mL
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: mitomycin C, cyclophosphamide
- Species / strain:
- Chinese hamster lung fibroblasts (V79)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- Without S9 mix cytotoxic effects were observed at 1300 µg/ml after 4 hours tratment and at 650 mg/ml and above after 18 hours treatment. With S9 mix cytotoxic effects were observed at 1300 µg/ml. Precipitation did not occur.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Conclusions:
- Interpretation of results: negative
- Executive summary:
Cytotoxic effects were observed at 650 µg/mL and above. Precipitation in the medium did not occur.
None of the cultures treated with the test substance in the absence of S9 mix showed biologically relevant increased numbers of aberrant metaphases.
The positive control mitomycin C induced clastogenic effects and demonstrated the sensitivity of the test system.Based on this test, the test substance is considered not to be clastogenic for mamalian cells in vitro.
Referenceopen allclose all
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Justification for classification or non-classification
Based on the study results a classification according to Regulation (EC) No. 1272/2008 (CLP) is not required.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.