Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 603-188-8 | CAS number: 127184-53-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Under the present test conditions the test item tested up to cytotoxic concentrations in the in vitro bacterial mutagenicity assay (Salmonella reverse mutation Assay, OECD 471), the in vitro mammalian mutagenicity assay (HPRT Assay, OECD 476) and the in vitro mammalian cytogenetic assay (Micronucleus Test, OECD 487) each assay carried out without and with metabolic activation, revealed no genotoxic activity.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2011-09-26 to 2011-10-31
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Guideline study; GLP study without deviations
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 1997
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- 2008
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Version / remarks:
- 2005
- Qualifier:
- according to guideline
- Guideline:
- other: ICH Guideline S2A:'Genotoxicity: Specific Aspects of Regulatory gentoxocoty tests for Pharmaceuticals (CPMP/ICH/141/95)'
- Qualifier:
- according to guideline
- Guideline:
- other: ICH Giudeline S2B: 'A Standard Battery for Genotoxicity Testing of Pharmaceuticals (CPMP/ICH/174/95)'
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
- Target gene:
- mutated gene loci resposible for histidine auxotropy
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Additional strain / cell type characteristics:
- other: histidine auxotroph
- Metabolic activation:
- with and without
- Metabolic activation system:
- Arochlor 1254 induced rat liver S9; male rats
- Test concentrations with justification for top dose:
- Experiment I and II:
10.0, 31.6, 100, 316, 1000 and 3160 µg per plate. - Vehicle / solvent:
- Test item was completely dissolved in dimethyl sulfoxide (DMSO), a correction factor of 1.014 was used to correct for impurities.
- Untreated negative controls:
- no
- Remarks:
- solvent test will be used as negative reference item
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- for details see below
- Positive control substance:
- other: without metabolic activation: sodium azide in aqua ad iniectabilia for TA 1535 and TA 100, 2-nitroflurene in DMSO for TA 98, 9-amino-acridine in ethanol abs. for TA 1537, Cumene hydroperoxide in DMSO for TA 102
- Remarks:
- with metabolic activation: 2-aminoanthracene for TA 98, TA 102, TA 1537, Cyclophosphamide fpr TA 100, TA 1535
- Details on test system and experimental conditions:
- Bacterial Reverse Mutation Test
SYSTEM OF TESTING
- Pre-Experiment: plate incorporation cytotoxicity test (+/- metabolic activation) with strain TA 100,
10 concentrations ranging from 0.316 to 5000 µg/plate were tested. Cytotoxicity and test item precipitation were noted in the plate incorporation
test without and with metabolic activation at concentrations of 3160 and 5000 µg/plate.
- Main test: 1st - Standard plate incorporation method, 2nd - Preincubation method
- Metabolic activation assay: Arochlor 1254 induced rat liver S9 fraction, the protein content of the S9 fraction was 34.2 mg/mL S9, cytochrome
P-450: 0.36 nmol/mg protein
ADMINISTRATION
- Dosing: 10.0, 31.6, 100, 316, 1000 and 3160 µg per plate.
- Data : 2 independent experiments with and without metabolic activation
- Number of replicates: 3 per concentration and experiment
- Positive and negative control groups and treatment:
- without metabolic activation:
sodium azide in aqua ad iniectabilia for TA 1535 and TA 100, 10 µg/plate
2-nitroflurene in DMSO for TA 98, 10 µg/plate
9-amino-acridine in ethanol abs. for TA 1537, 100 µg/plate
Cumene hydroperoxide in DMSO for TA 102, 10 µg/plate
- with metabolic acivation
2-aminoanthracene in DMSO for TA 98, TA 102, TA 1537, 2 µg/plate
Cyclophosphamide in aqua ad iniectabilia for TA 100, TA 1535, 1500 µg/plate
- negative control: solvent control: DMSO for all strains
- Incubation time: 48 h to 72 h at 37 °C in the dark
- Pre-incubation time: 20 min at 37 °C;
- Evaluation criteria:
- The test item is considered to show a positive response if:
- the number of revertants is significantly increased (p ≤ 0 .05, U-test according to MANN and WHITNEY) compared to the solvent control to at least
2-fold of the solvent control for TA 98, TA 100 and TA 102 and 3-fold of the solvent control for TA 1535 and TA 1537 in both independent
experiments.
- additionally, a significant (p ≤ 0.05) concentration (log value)-related effect (Spearman's rank correlation coefficient) is observed.
- positive results have to be reproducible and the histidine independence of the revertants has to be confirmed by streaking random samples on
histidine-free agar plates. - Statistics:
- According to the OECD Guideline 471, a statistical analysis of the data is not mandatory
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- without and with metabolic activation at concentrations of 3160 and 5000 µg/plate, precipitation was noted at 5000 µg/plate.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Additional information on results:
- GENTOXIC EFFECTS:
- With metabolic activation: negativ
- Without metabolic activation: negativ - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
- Conclusions:
- Interpretation of results (migrated information):
negative
Under the present test conditions the test item tested up to a concentration of 3160 µg /plate, that led to cytotoxicity and/or test item precipitation, caused no mutagenic effect in the Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 neither in the plate incorporation test nor in the preincubation test each carried out without and with metabolic activation.
- Executive summary:
The purpose of this study was to evaluate cyclohexane, 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethyl-, homopolymer, caprolactam-blocked for mutagenic activity (gene mutation) in bacteria without and with the addition of a mammalian metabolic activation system as originally described by AMES et al. (1973, 1975) and revised by MARON and Ames (1983).
The test item was examined in the 5 Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 in two independent experiments, each carried out without and with metabolic activation (a microsomal preparation derived from Aroclor 1254-induced rat liver). The first experiment was carried out as a plate incorporation test and the second as a preincubation test.
Six concentrations ranging from 10.0 to 3160 µg test item per plate were employed in two independent experiments each carried out without and with metabolic activation.
In the plate incorporation test and in the preincubation test, each carried out without and with metabolic activation, test item precipitation and/or cytotoxicity (reduction of the number of revertants by more than 50%) were noted at the top concentration of 3160 µg/plate in all test strains.
No mutagenic effect (no increase in revertant colony numbers as compared with control counts) was observed for the test item, tested up to a concentration of 3160 µg/plate, that led to cytotoxicity and/or test item precipitationin any of the 5 test strains in two independent experiments without and with metabolic activation, respectively (plate incorporation and preincubation test).
In conclusion, under the present test conditions the test item tested up to a concentration of 3160 µg /plate, that led to cytotoxicity and/or test item precipitation, caused no mutagenic effect in theSalmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 neither in the plate incorporation test nor in the preincubation test each carried out without and with metabolic activation.
- Endpoint:
- in vitro gene mutation study in mammalian cells
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2011-09-26 to 2011-12-21
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: GLP Guideline study.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- mammalian cell gene mutation assay
- Target gene:
- hypoxanthine-guanine phosphoribosyl transferase (HPRT)
- Species / strain / cell type:
- Chinese hamster lung fibroblasts (V79)
- Details on mammalian cell type (if applicable):
- Cells were maintained in Dulbecco's modified Eagle-Mediumsupplemented with 10% fetal calf serum, penicillin (100 U/mL) and streptomycin
(100 µg/mL) called DMEM-FCS; Cells were periodically checked for the absence of mycoplasma contamination by using the HOECHST stain 33258;
Spontaneous mutation rate was continuously monitored - Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- post-mitochondrial supernatant fraction derived from livers of Aroclor 1254-treated rats (S9 mix)
- Test concentrations with justification for top dose:
- Five concentrations: 6.25; 12.5; 25; 50; 100µg/mL
- Vehicle / solvent:
- The test item was completely dissolved in dimethyl sulfoxide (DMSO) . A factor of 1.014 was used to correct for impurities. Preparations of the test item made on the day of use were employed.
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: ethyl methanesulphonate (EMS) in direct mutagenicity experiment; 9,10-dimethyl-1,2-benzanthracene (DMBA) in S9 mix mediated assay; both EMS and DMBA were dissolved in DMSO. The applied concentrations were 600 or 700 µg EMS/mL medium or 20 or 30 µg DMBA/mL
- Details on test system and experimental conditions:
- CELLS AND TISSUE CULTURE MEDIA
- V79 cells were maintained in Dulbecco's modified Eagle-Mediumsupplemented with 10% fetal calf serum, penicillin 3 (100 U/mL) and streptomycin (100 µg/mL) called DMEM-FCS
- Incubation of cultures: at 37°C in a humidified atmosphere (90%) containing 10% CO2
- For subculturing, a trypsin (0.05%)-EDTA (ethylenediaminetetraacetic acid, 0.02%) solution in modified Puck's salt solution A was used.
METHOD OF APPLICATION:
- Exposure to the test item in the presence of S9 mix was performed in Dulbecco's phosphate buffered saline (PBS) which additionally contained 20 mM HEPES (N'-2-hydroxyethylpiperazine-N'-2-ethane-sulfonic acid) pH 7.4 (PBS-HEPES).
DURATION (see also tables below)
- Preincubation period: 1 day (in 30 mL DMEM-FCS)
- Exposure duration:
* 4 hours (1st experiment) and 24 hours (2nd experiment) without S9 mix, respectively;
* in the experiments with S9 mix, the medium was replaced by 18 mL S9 mix and the exposure limited to 4 hours.
* the negative control was treated with acetone (the vehicle) in the same way
* After removal of the test item and washing of the plates with PBS cells were trypsinised and a relative plating efficiency was determined for each
dose to obtain an accurate measure of the toxic effect of the chemical
- Expression time (cells in growth medium):
* Three replicate plates (60 mm diameter) were used with a known number of cells.
* Remaining cells were replated and the culture incubation continued until day 8 with 30 mL normal DMEM-FCS with one subcultivation on day 5.
* Afterwards cells were harvested by trypsinisation and replated at a density of 1 000 000 per 150mm diameter dish in DMEM-FCS containing
6-thioguanine (10 µg/mL) for selection of mutants (5 replicate plates), or at approx. 100 to 150 cells (exact number known) per 60 mm diameter
dish in medium without 6-thioguanine for the estimation of plating efficiencies (PE 2), (3 replicate plates).
* Plates were fixed and stained after about 8 days (plating efficiency plates) or 12 days (6-thioguanine plates).
- Positive control:
* ethyl methanesulphonate (EMS) in direct mutagenicity experiment;
* 9,10-dimethyl-1,2-benzanthracene (DMBA) in S9 mix mediated assay
both EMS and DMBA were dissolved in DMSO. The applied concentrations were 600 or 700 µg EMS/mL medium or 20 or 30 µg DMBA/mL
NUMBER OF REPLICATIONS: three
NUMBER OF CELLS EVALUATED: 1 500 000
DETERMINATION OF CYTOTOXICITY (same procedure was used as employed for the mutagenicity experiments, except that no mutant selection was carried out)
- Method: survival
- A concentration of the test item which produces a low level of survival (10 to 20%) would be used as highest concentration and the survival in the
lowest concentration being approximately the same as that in the negative control.
- Five adequately spaced concentrations are employed
- In this preliminary experiment without and with metabolic activation test item precipitation was noted at concentrations of 100 µg copolymer of
test item/mL and higher. Hence, 100 µg test item per mL were employed as the top concentrations for the mutagenicity tests without and with
metabolic activation.
- Evaluation criteria:
- The following pre-determined descriptive criteria are used for interpretation of the results:
- If in both independent experiments solvent and positive controls show results within the norm and if the test item does not increase the mutation
frequency 2-fold above the mean of the solvent controls under any condition, or if the mutation frequency is always lower than 40 x 10^-6 and if at least 1 000 000 cells per condition have been evaluated, the item is considered as negative in the test.
- In case of a dose-dependent increase of the mutation frequency in both independent experiments (at similar concentrations) to at least 2-fold
solvent control and at least 40 x 10^-6 both in the presence and/or absence of S9 mix, the item is considered as positive in the test. - Statistics:
- No satisfactory mathematical methods are available for the statistical analysis of mammalian cell mutagenicity experiments.
- Species / strain:
- Chinese hamster lung fibroblasts (V79)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- precipitation were noted at concentrations of 100 µg test item/mL
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Additional information on results:
- RANGE-FINDING/SCREENING STUDIES (Preliminary cytotoxicity test):
The concentrations employed were chosen based on the results of a cytotoxicity study. In this preliminary experiment without and with metabolic
activation test item precipitation was noted at concentrations of 100 µg copolymer of test item/mL and higher. Hence, 100 µg test item per mL were employed as the top concentrations for the mutagenicity tests without and with metabolic activation.
COMPARISON WITH HISTORICAL CONTROL DATA:
All the mutation frequencies obtained for the test item are within the negative control ranges. The mean mutation frequency of the control
background data is 14.11 ± 7.42 x 10^-6 clonable cells with a range of 1.30 - 34.80 x 10^-6 clonable cells for the experiments without metabolic
activation and 14.88 ± 8.20 x 10^-6 clonable cells with a range of 2.18 - 38.36 x 10^-6 clonable cells for the experiments with metabolic activation. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
- Conclusions:
- Interpretation of results (migrated information):
negative
Under the present test conditions, the test item tested up to a concentration of 100 µg /mL medium, that led to test item precipitation in the experiments without and with metabolic activation, respectively, was negative in the HPRT-V79 mammalian cell mutagenicity test under conditions where positive controls exerted potent mutagenic effects.
- Executive summary:
Cyclohexane, 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethyl-, homopolymer, caprolactam-blocked was tested for mutagenic potential in a gene mutation assay in cultured mammalian cells (V79, genetic marker HPRT) both in the presence and absence of metabolic activation by a rat liver post-mitochondrial fraction (S9 mix) from Aroclor 1254-induced animals. The duration of the exposure with the test item was 4 hours or 24 hours in the experiments without S9 mix and 4 hours in the experiments with S9 mix.
The test item was completely dissolved in dimethyl sulfoxide (DMSO).A factor of 1.014 was used to correct for impurities.
The concentrations employed were chosen based on the results of a cytotoxicity study. In this preliminary experiment without and with metabolic activation test item precipitation was noted starting at concentrations of 100 µg test item/mL and higher. Hence, 100 µg test item/mL were employed as the top concentration for the mutagenicity tests without and with metabolic activation.
Five concentrations ranging from 6.25 to 100 µg test item/mL were selected for the experiments without and with metabolic activation.
In the main study, test item precipitation was noted at the top concentration of 100 µg/mL in the experiments without and with metabolic activation. No signs ofcytotoxicityin form of decreased plating efficiency (PE1) and (PE2)were noted in the first and second experiments up to the top concentration of 100 µg/mL in the absence and presence of metabolic activation, respectively.
Experiments without metabolic activation
The mutation frequency of the negative control DMSO was 18.81 and 12.24 x 10-6clonable cells. Hence, the negative controls were well within the expected range (see below).
The mutation frequency of the cultures treated with concentrations of 6.25, 12.5, 25, 50 or 100 µg test item/mL culture medium ranged from10.27to 18.58 x 10-6 clonable cells. These results are within the normal range of the negative controls.
Experiments with metabolic activation
The mutation frequency of the negative control DMSO was 13.24 and 16.63 x 10-6clonable cells. Hence, the negative controls were well within the expected range (see below).
The mutation frequency of the cultures treated with concentrations of 6.25, 12.5, 25, 50 or 100 µg test item/mL culture medium ranged from 9.96to 17.46x 10-6 clonable cells. These results are within the normal range of the negative controls.
The positive controls EMS (ethyl methanesulfonate) in the direct test and DMBA (9,10-dimethyl-1,2-benzanthracene), a compound which requires metabolic activation, caused a pronounced increase in the mutation frequencies ranging from 446.71 to 1281.69 x 10-6clonable cells in the case of EMS and ranging from 441.59 to 608.05 x 10-6clonable cells in the case of DMBA, indicating the validity of this test system.
The background mutation frequency at LPT ranges from 1.30 to 38.36 x 10-6clonable cells for the negative controls. The mutation frequency of the positive controls at LPT ranges from 112.1 to 1708.4 x 10-6clonable cells forand 130.0 to 2693.3 x 10-6clonable cells for DMBA.
Under the present test conditions, the test item tested up to a concentration of 100 µg /mL medium, that led to test item precipitation in the experiments without and with metabolic activation, respectively, was negative in the HPRT-V79 mammalian cell mutagenicity test under conditions where positive controls exerted potent mutagenic effects.
- Endpoint:
- in vitro cytogenicity / micronucleus study
- Remarks:
- Type of genotoxicity: chromosome aberration
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2011-09-26 to 2011-12-02
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Guideline study; GLP study without deviations
- Qualifier:
- according to guideline
- Guideline:
- other: OECD Guidelines for Testing of Chemicals: In Vitro Mammalian Cell Micronucleus Test (MNvit), No. 487, Guideline July 22, 2010
- Deviations:
- no
- GLP compliance:
- yes
- Type of assay:
- in vitro mammalian cell micronucleus test
- Target gene:
- mammalian cell system( Chinese hamster Ovary cells)
- Species / strain / cell type:
- other: Chinese hamster ovary (CHO-K1) cells
- Details on mammalian cell type (if applicable):
- Species/cell type: CHO cells as originally derived from the ovary of Chinese hamster, obtained from ATCC
CHO-K1, modal chromosome number of 20 - Additional strain / cell type characteristics:
- not specified
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9-mix based on liver homogenate fraction from male rats, induced with Aroclor 1254 (i.p.)
- Test concentrations with justification for top dose:
- 12.5, 25, 50, 100 µg/mL with and without metabolic activation, 4 h exposure
12.5, 25, 50, 100 µg/ml without metabolic activation, 20 h exposure - Vehicle / solvent:
- Vehicle: test item was completely dissolved in dimethyl sulfoxide (DMSO) , prior to treatment of the cells. A factor of 1.014 was used to correct for
impurities. Fresh preparations of the test item were used. - Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- vehicle: DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- clastogen
- Positive control substance:
- cyclophosphamide
- Remarks:
- +S9-mix
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- vehicle: DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- clastogen
- Positive control substance:
- mitomycin C
- Remarks:
- -S9-mix
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- vehicle: DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- aneugen
- Positive control substance:
- other: colchicine
- Remarks:
- - S9-mix
- Details on test system and experimental conditions:
- SYSTEM OF TESTING:
- Species/cell type: CHO-K1 cell line, cell cycle length 12 hours
- Metabolic activation system: male rat liver S9 from Aroclor 1254 induced animals
ADMINISTRATION:
- Solubility: test item was completely dissolved in dimethyl sulfoxide (DMSO) , prior to treatment of the cells. A factor of 1.014 was used to correct for
impurities. Fresh preparations of the test item were used.
- Preliminary experiment: precipitation were noted starting at a concentration of 100 µg test item/mL. Hence, 100 µg test item/mL were employed as the top concentration for the genotoxicity tests without and with metabolic activation.
- Dosing: 12.5, 25, 50, 100 µg/mL with and without metabolic activation, 4 h exposure
12.5, 25, 50, 100 µg/ml without metabolic activation, 20 h exposure
- Positive and negative control groups and treatment:
negative: acetone
positive (+S9): cyclophosphamide
positive (-S9): mitomycin C
positive (-S9): colchicine
DURATION:
- most aneugens and clastogens are detected by a short term treatment period of 4 hours in the presence and absence of S9, followed by removal of
the test item and a growth period of 1.5 – 2.0 cell cycles. Cells were sampled at a time equivalent to about 1.5 – 2.0 times the normal (i.e. untreated)
cell cycle length either after the beginning or at the end of treatment. Because of the potential cytotoxicity of S9 preparations for cultured
mammalian cells, an extended exposure treatment of 1.5 – 2.0 normal cell cycles was used only in the absence of S9.
Cell treatment and harvest times for the used CHO cell line see table below.
As both initial tests of the short 4-h treatment are negative or equivocal, a subsequent, extended exposure treatment without S9 was used.
- Harvesting time: harvesting time was 20 hours after the end of exposure
STAIN (for cytogenetic assays): Each culture was harvested and processed separately. High-quality cell preparations for scoring were obtained. Cell
cytoplasm were retained to allow the detection of micronuclei and (in the cytokinesis-block method) reliable identification of binucleate cells. The
slides were stained using Giemsa.
NUMBER OF REPLICATIONS: 2, duplicate cultures were used for each test item concentration and for the solvent control cultures.
NUMBER OF CELLS EVALUATED: The micronucleus frequencies were analysed in at least 2000 binucleated cells per concentration (at least 1000
binucleated cells per culture; two cultures per concentration).
DETERMINATION OF CYTOTOXICITY
- Method: evaluation of cytotoxicity was based on the Cytokinesis-Block Proliferation Index (CBPI) or the Replicative Index (RI).
The CBPI indicates the average number of cell cycles per cell during the period of exposure to cytoB, and is used to calculate cell proliferation.
The RI indicates the relative number of nuclei in treated cultures compared to control cultures and can be used to calculate the % cytostasis:
OTHER EXAMINATIONS: 1000 binucleated cells per duplicate cell culture were scored to assess the frequency of cells with one, two, or more than
two micronuclei. Additionally, the cells were classified as mononucleates, binucleates or multinucleates to estimate the proliferation index as a
measure of toxicity.
- Evaluation criteria:
- The assay demonstrates its ability to reliably and accurately detect substances of known aneugenic and clastogenic activity, with and without
metabolic activation.
Solvent/vehicle control and untreated cultures give reproducibly low and consistent micronuclei frequencies, typically 5 – 25 micronuclei per 1000
cells according to OECD 487. Data from negative and positive controls are used to establish historical control ranges. These values are used in
deciding the adequacy of the concurrent negative/positive controls for an experiment . - Statistics:
- The assessment was carried out by a comparison of the samples with the positive and the vehicle control, using a chi-square test corrected for
continuity according to YATES.
If a test item induces a concentration-related increase or a statistical significant and reproducible increase in the number of cells containing
micronuclei, it is classified as a positive result. - Species / strain:
- Chinese hamster Ovary (CHO)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity, but tested up to precipitating concentrations
- Remarks:
- precipitation was noted at the top concentration of 100 µg test item/mL in the experiments without and with metabolic activation.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Additional information on results:
- The pH and osmolality of the negative control and test item formulations in the medium were determined for each experiment employing the
methods given below:
pH values: using a digital pH meter type WTW pH 525 (series no. 51039051),
Osmolality: with a semi-micro osmometer .
No relevant changes in pH or osmolality of the formulations were noted.
Test item was completely dissolved in dimethyl sulfoxide (DMSO) , prior to treatment of the cells. A factor of 1.014 was used to correct for
impurities.Fresh preparations of the test item were used.
Data from negative and positive controls are used to establish historical control ranges. These values are used in deciding the adequacy of the
concurrent negative/positive controls for an experiment i.e. the negative/positive control data must be within the historical ranges - Remarks on result:
- other: other: Chinese hamster Ovary (CHO)
- Remarks:
- Migrated from field 'Test system'.
- Conclusions:
- Interpretation of results (migrated information):
negative
Under the present test conditions, the test item tested up to a concentration of 100 µg copolymer of caprolactam and isophorone diisocyanate/mL medium, that led to test item precipitation in the absence and in the presence of metabolic activation employing two exposure times (without S9) and one exposure time (with S9) revealed no indications of genotoxic properties in the in vitro micronucleus test. - Executive summary:
The in vitro micronucleus assay is a genotoxicity test system for the detection of chemicals which induce the formation of small membrane bound DNA fragments i.e. micronuclei in the cytoplasm of interphase cells. The purpose of the micronucleus assay is to detect those agents which modify chromosome structure and degregation in such a way as to lead to induction of micronuclei in interphase cells.
Test samples were assayed in anin vitromicronucleus test using CHO cell cultures both in the presence and absence of metabolic activation by a ratliver post-mitochondrial fraction (S9 mix) from Aroclor 1254 induced animals.
The test was carried out employing 2 exposure times without S9 mix: 4and 20 hours, and 1 exposure time with S9 mix: 4 hours. The experiment with S9 mix was carried out twice. The harvesting time was 20 hours after the end of exposure. The study was conducted in duplicate.
The test item was completely dissolved in dimethyl sulfoxide (DMSO). A factor of 1.014 was used to correct for impurities.
The concentrations employed in the main study were chosen based on the results of a cytotoxicity study.In this preliminary experiment without and with metabolic activation cytotoxicity and test item precipitation were noted starting at a concentration of 100 µg /mL. Hence, 100 µg test item/mL were employed as the top concentration for the mutagenicity tests without and with metabolic activation.
In the main study test item precipitation was noted at the top concentration of 100 µg test item/mL in the experiments without and with metabolic activation.
Mitomycin C, colchicine and cyclophosphamide were employed as positive controls in the absence and presence of metabolic activation, respectively.
Tests without metabolic activation (4- and 20-hour exposure)
Themicronucleus frequencies of cultures treated with the test item at concentrations from 12.5 to 100copolymer of caprolactam and isophorone diisocyanateµg/mL medium(4‑h and 20-h exposure)in thein the absence of metabolic activation ranged from 4.0 to 15.5micronuclei per 1000 binucleated cells.The results obtained are considered to be within the normal range of the negative control where a mean incidence ofmicronucleus frequency of 10.5micronuclei per 1000 binucleated cellswas observed after a 4-hour and 20-hour exposure.The micronucleus frequency of the untreated controls was 6.0 micronuclei per 1000 binucleated cells.
Test with metabolic activation (4-hour exposure)
The micronucleus frequencies of cultures treated with the test item at concentrations from 12.5 to 100 µg copolymer of caprolactam and isophorone diisocyanate/mL medium in the presence of metabolic activation ranged from 7.5 to 21.5 micronuclei per 1000 binucleated cells. The results obtained are considered to be within the normal range of the negative control where a mean incidence of micronucleus frequencies of 8.5 or 19.5 micronuclei per 1000 binucleated cells was observed in the first and second experiment. The micronucleus frequencies of the untreated controls were 5.5 or 7.5 micronuclei per 1000 binucleated cells, respectively.
Connclusion
Under the present test conditions, the test item tested up to a concentration of 100 µg copolymer of caprolactam and isophorone diisocyanate/mL medium, that led to test item precipitation in the absence and in the presence of metabolic activation employing two exposure times (without S9) and one exposure time (with S9) revealed no indications of genotoxic properties in the in vitro micronucleus test.
In the same test, Mitomycin C, colchicine and cyclophosphamide induced significant damage.
Referenceopen allclose all
see attchached document
Criteria for assay acceptance
Solvent control: As the total number of colonies is normally low and as a single mutation may cause several colonies due to cell division during the expression period, a relatively large variation of the mutation frequency may result. This is especially true, if a low spontaneous mutation frequency is forced by cloning (in order to achieve a high sensitivity of the test).
The historical background mutation frequency in this system has been reported to be 1 to 44 mutants per 106survivors in non-activation solvent controls and 6 to 46 per 106survivors in S9 activation solvent controls [1]. The background data obtained atLPTare given at the end of this chapter. The spontaneous mutation frequency may be variable from experiment to experiment, but should normally lie within the above-mentioned range. The positive controls(600 and 700 µg/mL) and DMBA (20 and 30 µg/mL) should cause a 10-fold or greater increase in mutation frequency.
The background mutation frequency atLPTranges from 1.30 to 38.36 x 10-6clonable cells for the negative controls. The mutation frequency of the positive controls atLPTranges from 112.1 to 1708.4 x 10-6clonable cells forand 130.0 to 2693.3 x 10-6clonable cells for DMBA (see table below).
The mutation frequencies of the solvent controls andthe positive controlswithout and with metabolic activation for the last 58 experiments (most recent background data, not audited by the QAU-department) are given as follows:
Mutation frequency per 106 clonable cells |
||||
|
Without metabolic activation (24-h exposure) |
With metabolic activation (4-h exposure) |
||
Solvent control (n = 58) |
||||
mean |
14.11 |
14.88 |
||
SD |
7.42 |
8.20 |
||
range |
1.30 - 34.80 |
2.18 - 38.36 |
||
Positive control (µg/mL) (n = 58) |
||||
|
EMS (600) |
EMS (700) |
DMBA (20) |
DMBA (30) |
mean |
449.1 |
468.4 |
347.1 |
563.8444.2 |
SD |
444.2 |
268.6 |
241.8 |
700.1 |
range |
112.1 – 1708.4 |
152.0 – 976.9 |
130.0 – 844.8 |
151.3 – 2693.3 |
SD = Standard deviation
EMS = ethyl methanesulfonate
DMBA = 9,10-dimethyl-1,2-benzanthracene
see attached tables
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Cyclohexane, 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethyl-, homopolymer, caprolactam-blocked did not induce gene mutations in bacteria (OECD TG 471; LPT, 2012) or in mammalian cells (OECD TG 476; LPT, 2012) and demonstrate no potential to induce micronuclei in Chinese Hamster Ovary cells in vitro (OECD TG 487; LPT, 2012) either with or without metabolic activation.
Results from genetic toxicity tests in vivo are not available.
Justification for selection of genetic toxicity endpoint
No study was selected, since all in vitro genotoxicity studies
showed no genotoxic effects.
Justification for classification or non-classification
Because all in vitro genotoxicity studies revealed clearly negative results, it can be concluded that the test substance is not genotoxic in vitro and therefore must not be classified according to the criteria of EC Regulation 1272/2008.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.