Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 939-601-6 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vivo
Administrative data
- Endpoint:
- in vivo mammalian somatic cell study: cytogenicity / bone marrow chromosome aberration
- Remarks:
- Type of genotoxicity: chromosome aberration
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- 1984
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: According to or similar to guideline study OECD 475: GLP.
Data source
Referenceopen allclose all
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 984
- Reference Type:
- other: HPV Summary
- Title:
- Robust Summary of Information for Substance Group Kerosene/Jet Fuel.
- Author:
- American Petroleum Institute
- Year:
- 2 003
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 475 (Mammalian Bone Marrow Chromosome Aberration Test)
- GLP compliance:
- yes
- Type of assay:
- chromosome aberration assay
Test material
- Reference substance name:
- Hydrodesulfurized kerosene
- IUPAC Name:
- Hydrodesulfurized kerosene
- Reference substance name:
- Kerosine (petroleum), hydrodesulfurized
- EC Number:
- 265-184-9
- EC Name:
- Kerosine (petroleum), hydrodesulfurized
- Cas Number:
- 64742-81-0
- IUPAC Name:
- 64742-81-0
- Details on test material:
- Kerosene, hydrodesulfurized (CAS No. 64742-81-0)
Constituent 1
Constituent 2
Test animals
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male/female
Administration / exposure
- Route of administration:
- intraperitoneal
- Details on exposure:
- A pilot study was carried out in 4 male and 4 female young adult Sprague Dawley rats. These animals were given a single intraperitoneal (i.p.) dose (3 g/kg) of API 81-07. During the following 48 hours observation, no animals died. The doses selected for the cytogenetics study were therefore 0.3, 1 and 3 g/kg. Three groups of 15 male and 15 female rats were given a single i.p. dose of either 0.3, 1 or 3 g API 81-07/kg. At six, 24 and 48 hours after dosing 5 males and 5 females were killed at each dose level. An additional 15 males and 15 females were untreated and served as negative controls. These animals were otherwise treated the same as the test animals. A positive control group of 5 males and 5 females was administered 0.8 mg/kg Triethylenemelamine (TEM) as a single i.p. dose. These positive control animals were killed 24 hours after administration of the positive control substance. Three hours prior to being killed with CO2, animals were injected i.p. with 4 mg/kg of colchicine. After the animal was killed, the adhering soft tissue and epiphyses of both tibiae were removed and the marrow was flushed from the bone and transferred to Hank's balanced salt solution. The marrow button was collected by centrifugation and was then re suspended in 0.075M KCl. The centrifugation was repeated and the pellet resuspended in fixative (methanol:acetic acid, 3:1). The fixative was changed once and left overnight. Cells in fixative were dropped onto glass slides which were then air dried and stained with Giemsa. Slides were coded and scored for chromosomal aberrations. 50 spreads were read for each animal where feasible. A mitotic index based on at least 500 counted cells was also recorded. The index was calculated by scoring the number of cells in mitosis per 500 cells on each read slide.
- Duration of treatment / exposure:
- Three groups of 15 male and 15 female rats were given a single i.p. dose of either 0.3, 1 or 3 g API 81-07/kg. At six, 24 and 48 hours after dosing 5 males and 5 females were killed at each dose level. An additional 15 males and 15 females were untreated and served as negative controls.
- Frequency of treatment:
- Single i.p. dose of either 0.3, 1 or 3 g API 81-07/kg
Doses / concentrations
- Remarks:
- Doses / Concentrations:
0, 0.3, 1 or 3 g/kg.
Basis:
analytical conc.
i.p.
- No. of animals per sex per dose:
- 15 male and 15 female rats
- Control animals:
- yes, concurrent no treatment
- Positive control(s):
- These animals were otherwise treated the same as the test animals. A positive control group of 5 males and 5 females was administered 0.8 mg/kg Triethylenemelamine (TEM) as a single i.p. dose. These positive control animals were killed 24 hours after administration of the positive control substance.
Examinations
- Details of tissue and slide preparation:
- Three hours prior to being killed with CO 2 , animals were injected i.p. with 4 mg/kg of colchicine. After the animal was killed, the adhering soft tissue and epiphyses of both tibiae were removed and the marrow was flushed from the bone and transferred to Hank's balanced salt solution. The marrow button was collected by centrifugation and was then resuspended in 0.075M KCl. The centrifugation was repeated and the pellet re suspended in fixative (methanol:acetic acid, 3:1). The fixative was changed once and left overnight. Cells in fixative were dropped onto glass slides which were then air dried and stained with Giemsa. Slides were coded and scored for chromosomal aberrations. 50 spreads were read for each animal where feasible. A mitotic index based on at least 500 counted cells was also recorded. The index was calculated by scoring the number of cells in mitosis per 500 cells on each read slide.
- Evaluation criteria:
- Data interpretation and evaluation Gaps were not counted as significant aberrations. Open breaks were considered as indicators of genetic damage as were configurations resulting from the repair of breaks. The latter included translocations, multiradials, rings, multicentrics, etc. Reunion figures such as these were weighed slightly higher than breaks since they usually resulted from more than one break. Cells with more than one aberration were considered to indicate more genetic damage than those with evidence of single events. Consistent variations from the euploid number were also considered in the evaluation of mutagenic potential.
The type of aberration, its frequency and its correlation to dose in a given time was considered in evaluating the test material as being positive or negative. - Statistics:
- Statistical evaluation Performed by Student's t-tests on four parameters:
1. Number of structural aberrations per animal
2. Number of numerical aberrations per animal
3. % cells with one or more structural aberrations per animal
4. % cells with 2 or more structural aberrations per animal.
Results and discussion
Test results
- Sex:
- male/female
- Genotoxicity:
- negative
- Toxicity:
- not examined
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- The data are given in the report for males, females and as male and female pooled data. When the results for males were compared with those for controls and the females were compared to controls, no statistically significant differences were found. The data summarized below, are the pooled data for males and females. The structural aberration frequency did not differ significantly from the negative control at any tested dose. The percentage of cells showing one or more structural aberrations or 2 or more structural aberrations were also similar to the negative controls. A concurrent positive control group induced significant increases in aberrations.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information): negative
The test material did not cause chromosome aberration in the test model. - Executive summary:
The test material did not cause chromosome aberration in the test model.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.