Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 246-805-2 | CAS number: 25306-75-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Hydrolysis
Administrative data
Link to relevant study record(s)
Description of key information
Hydrolysis will be a significant factor in determining the environmental fate of Sodium isobutyl xanthate. In neutral or mildly alkaline solutions, Sodium isobutyl xanthate decomposes to the alcohol, carbon disulphide, sodium carbonate and sodium trithiocarbonate, the two salts arising from neutralisation of carbon disulphide with the sodium hydroxide liberated. In more strongly alkaline media, hydrogen sulphide is liberated. However, strongly alkaline conditions are unlikelyto be encountered under the conditions of use in the mining industry. The half-life atpH 7 at 25°C is reportedly about 260 hours, increasing to over 500 hours in the pH range 8 to 11.
Sodium isobutyl xanthate is hydrolytically unstable when exposed to acidic conditions, reverting rapidly to ethanol, carbon disulphide and caustic soda, and therefore will not persist in the acidic environment of tailings dams. If dischargedto waterways, the chemical would be likely to persist for at least some days,hydrolysing only slowly in this more neutral environment. However, it is notexpected to bioaccumulate in view of its ionic character.
Key value for chemical safety assessment
- Half-life for hydrolysis:
- 260 h
- at the temperature of:
- 25 °C
Additional information
Hydrolysis is a chemical reaction during which molecules of water (H2O) are split into hydrogen cations (H+, conventionally referred to as protons) and hydroxide anions (OH−) in the process of a chemical mechanism).
When water is added to Sodium isobutyl xanthate it reacts with water to form the others substances: alcohol, sodium carbonate,trithiocarbonate and carbon disulphide.
On this basis,Sodium isobutyl xanthate does not have a potential for Hydrolysis and sodium ion will not hydrolise.
On the other basis hydrolysis may proceed with the others active substances:
Further hydrolysis of sodium trithiocarbonate to sodium carbonate and hydrogen sulphide and carbon disulphide to carbon dioxide and hydrogen sulphide may occur. The reaction is catalysed by the alcohol formed from the xanthic acid and is self accelerating.
On this basis hydrolysis proceed with the others active substances:sodium trithiocarbonate,carbon disulphide,hydrogen sulphide.
Xanthates decompose in aqueous solution by dissociation, oxidation and hydrolysis. Hydrolytic decomposition is the main reaction in alkaline solutions while the other two reactions occur in acidic solutions.
Aqueous solution
There are three decomposition pathways of xanthates in aqueous solution:
A. Xanthates dissociate forming alkali metal cations and xanthate anions. Thesolution undergoes further hydrolysis to xanthic acid which decomposes intocarbon disulphide and alcohol.
ROCS2Na + H2O→ ROCS2H + NaOH
ROCS2H →CS2+ ROH
B. Xanthate is oxidised to dixanthogen. The extent of this reaction is very smalland dependent on the pH. Equilibrium is reached after about 5–10% of thexanthate is oxidised, and the reaction increases with a fall in the pH.
2ROCS–2+ H2O + _O2→ (ROCS2)2+ 2OH–
C. In neutral and alkaline media, xanthates decompose by hydrolytic decomposition.
6ROCS–2+ 3H2O →6ROH + CO32 –+ 3CS2+ 2CS32 –
Further hydrolysis of sodium trithiocarbonate to sodium carbonate andhydrogen sulphide and carbon disulphide to carbon dioxide and hydrogensulphide may occur. The reaction is catalysed by the alcohol formed from thexanthic acid and is self accelerating.
Reaction C is the main reaction in alkaline solution while A and B occur in acidic solutions. During use in mining processes, reaction C is the principal decompositionpathway and carbon disulphide the principal decomposition product.
Part of thecarbon disulphide formed may decompose further to carbonate and thiocarbonatesalts, some of it may evaporate and some may build up in the xanthate solution.Once the solubility of carbon disulphide is exceeded it forms a separate layer belowthe sodium isobutyl xanthate solution.
Reactions A and B are minor and require acidic conditions. Reaction C proceeds in neutral or alkaline pH and is self-accelerating, as it is catalysed by the alcohol formed as a product. Its rate increases with concentration of the reagents and with temperature, from 1.1%/day at 20 °C to 4.6%/day at 40 °C for a 10% solution at pH=10. A decrease in pH from 10 to 6.5 increases the decomposition rate from 1.1%/day to 16%/day. Decomposition is also accelerated by the presence of metals, such as copper, iron, lead or zinc, which act as a catalyst
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.