Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Immunotoxicity

Currently viewing:

Administrative data

Description of key information

Key value for chemical safety assessment

Additional information

Toxicological relevance of the counterion “sulfate”

The registrant is of the opinion that the toxicity of strontium sulfate is driven by the strontium moiety and that the sulfate anion does not contribute to the overall toxicity of the substance strontium sulfate to any relevant extent, for the following reasons:

Sulfate anions are abundantly present in the human body in which they play an important role for the ionic balance in body fluids. Sulfate is required for the biosynthesis of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) which in turn is needed for the biosynthesis of many important sulfur-containing compounds, such as chondroitin sulfate and cerebroside sulfate. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) concludes that the few available studies in experimental animals do not raise any concern about the toxicity of the sulphate ion in sodium sulphate. Sodium sulphate is also used clinically as a laxative. In clinical trials in humans using 2-4 single oral doses of up to 4500 mg sodium sulphate decahydrate per person (9000 – 18000 mg per person), only occasional loose stools were reported. These doses correspond to 2700 - 5400 mg sulphate ion per person. High bolus dose intake of sulphate ion may lead to gastrointestinal discomfort in some individuals. No further adverse effects were reported (JECFA 2000, 2002). This position was adopted by the European Food Safety Authority (EFSA 2004) without alteration.

Based on the above information, one can therefore safely assume that the sulfate anion in strontium sulfate does not contribute to the overall toxicity of strontium, sulfate. It is concluded that only the effect of “strontium” is further considered in the human health hazard assessment of strontium sulfate.

Read across from SrCl2 to SrSO4:

The toxicity of strontium substances such as strontium sulfate can reasonably assumed to be determined by the availability of strontium ions in solution. As a first surrogate for bioavailability, the water solubility of a test substance may be used. Strontium chloride is highly water soluble with ~538 g/L at pH ~ 7, whereas strontium sulfate is moderately soluble (~125 mg/L at pH ~ 6.5). Hence, any read across from strontium chloride to strontium sulfate is inherently very conservative.

 

In vitro experiments demonstrated that strontium is able to stimulate the release of histamine from mast cells but with a lower efficiency than calcium (Foreman and Mongar, 1972; Foreman, 1977). In addition, strontium stimulated the secretion of 5-hydroxytryptamine in washed human platelets (Best et al., 1981). It was concluded that strontium activates the liberation of arachidonate from membrane phospholipids, with the subsequent biosynthesis of thromboxane A2. The addition of strontium chloride to diluted rabbit serum in vitro inhibited the bactericidal actions of the serum (Toshioka et al., 1974). This effect was attributed to the inhibition of the complement.

Justification for classification or non-classification