Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 931-296-8 | CAS number: 97862-59-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicity to soil macroorganisms except arthropods
Administrative data
Link to relevant study record(s)
- Endpoint:
- toxicity to soil macroorganisms except arthropods: short-term
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 13.01.2004-29.01.2004
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 207 (Earthworm, Acute Toxicity Tests)
- Qualifier:
- according to guideline
- Guideline:
- EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test)
- GLP compliance:
- yes (incl. QA statement)
- Analytical monitoring:
- no
- Vehicle:
- no
- Details on preparation and application of test substrate:
- - Method of mixing into soil (if used): First, the articial soil (without calcium carbonate) was prepared by intensively mixing in a cement mixer. For each replicate, 566 g of the prepared substrate was mixed with calcium carbonate in a laboratory mixer. During mixing, 100 mL of purified water containing the desired amount of the test item was added.
- Chemical name of vehicle (organic solvent, emulsifier or dispersant): no vehicle used - Test organisms (species):
- Eisenia fetida
- Animal group:
- annelids
- Details on test organisms:
- TEST ORGANISM
- Common name: earthworm
- Source: RCC own breeding
- Age at test initiation (mean and range, SD): ca. 8 months
- Weight at test initiation (mean and range, SD): 312-349 mg wet weight
ACCLIMATION
- Acclimation period: Two days prior to the test start, the worms were placed into artificial soil, fed with horse manure and held at the test temperature under a 16 h light/8 h dark photoperiod. One day prior to the test start, the test organisms were acclimated to the test conditions (artificial soil without feeding and continuous illumination).
- Acclimation conditions (same as test or not): same
- Health during acclimation (any mortality observed): yes (no mortality observed) - Study type:
- laboratory study
- Substrate type:
- artificial soil
- Limit test:
- no
- Total exposure duration:
- 14 d
- Test temperature:
- 19-21°C
- pH:
- at the start of the test: pH 6.1 (untreated artificial soil)
at the end of the test: 5.9-6.3 - Moisture:
- initially: ca. 35%
at the end of the test: 32% - Details on test conditions:
- TEST SYSTEM
- Test container (material, size):cylindrical glass vessels (diameter: 10 cm, height: 14 cm; volume: ca. 1 L)
- Amount of soil or substrate: 556 g dry weight
- No. of organisms per container (treatment): 10
- No. of replicates per treatment group:4
- No. of replicates per control: 4
SOURCE AND PROPERTIES OF SUBSTRATE (if soil)
- Composition (if artificial substrate): according to guideline
OTHER TEST CONDITIONS
- Photoperiod: continuous light
- Light intensity: not reported
EFFECT PARAMETERS MEASURED (with observation intervals if applicable) : mortality, body weight and behaviour
VEHICLE CONTROL PERFORMED: no vehicle used
TEST CONCENTRATIONS
- Spacing factor for test concentrations: 2
- Range finding study: not reported - Nominal and measured concentrations:
- 0 (control), 63, 125, 250, 500, and 1000 mg product/kg dry soil (nominal)
0 (control), 24, 47.5, 95, 190, and 380 mg a.i./kg dry soil (nominal) - Reference substance (positive control):
- yes
- Remarks:
- 2-chloroacetamide
- Duration:
- 14 d
- Dose descriptor:
- LC0
- Effect conc.:
- >= 1 000 mg/kg soil dw
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- mortality
- Duration:
- 14 d
- Dose descriptor:
- LC0
- Effect conc.:
- >= 380 mg/kg soil dw
- Nominal / measured:
- nominal
- Conc. based on:
- act. ingr.
- Basis for effect:
- mortality
- Results with reference substance (positive control):
- - Results with reference substance valid? yes
- Relevant effect levels: 14 d LC50=19 mg/kg dry soil - Validity criteria fulfilled:
- yes
- Conclusions:
- C8-18 AAPB showed no toxicity towards the earthworm Eisenia fetida in a 14 d acute toxicity study conducted according to OECD Guideline 207 (Earthworm, Acute Toxicity Tests) and EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test). No mortality was observed even in the highest concentration tested (14 d LC0 (NOEC)>=380 mg a.i./kg dry soil assuming an active matter content of 38%). No effects on body weight were found (14 d EC0>=380 mg a.i./kg dry soil assuming an active matter content of 38%). Moreover, no abnormal behaviour of the test organisms or other symptoms of toxicity were recorded in worms at any of the test treatments.
- Executive summary:
The acute toxicity of C8 -18 AAPB towards the earthworm Eisenia fetida was investigated in a study conducted according to OECD Guideline 207 (Earthworm, Acute Toxicity Tests) and EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test). At total 40 animals per concentration step were exposed to nominal concentrations of 0 (control), 63, 125, 250, 500, and 1000 mg/kg dry soil for 14 d. No mortality was observed even in the highest concentration tested (14 d LC0 (NOEC)>=1000 mg product/kg dry soil; 14 d LC0>=380 mg a.i./kg dry soil assuming an active matter content of 38%). No effects on body weight were found (14 d-EC0>=1000 mg product/kg dry soil; 14 d EC0>=380 mg a.i./kg dry soil assuming an active matter content of 38%). Moreover, no abnormal behaviour of the test organisms or other symptoms of toxicity were recorded in worms at any of the test treatments.
This study is regarded as valid with restrictions and satiesfies the requirements of the guideline.
Results Synopsis
Test Organism: Eisenia fetidaTest Type: Static
14 d LC0: >=380 mg a.i./kg soil dw nominal
14 d EC0: >=380 mg a.i./kg soil dw nominal
Endpoint(s) Effected: mortality, behaviour
- Endpoint:
- toxicity to soil macroorganisms except arthropods: short-term
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- REPORTING FORMAT FOR THE ANALOGUE APPROACH
see "General Justification for Read-Across" attached to IUCLID section 13
1. HYPOTHESIS FOR THE ANALOGUE APPROACH
Mutual read across from the AAPBs to one another is justified:
a) Based on the information given in section 1, it can be concluded that all AAPBs mentioned above are similar in structure, since they are manufactured from similar resp. identical precursors under similar conditions and all contain the same functional groups. Thus a common mode of action can be assumed.
b) The content of minor constituents in all products are comparable and differ to an irrelevant amount.
c) The only deviation within this group of substances is a minor variety in their fatty acid moiety, which is not expected to have a relevant impact on intrinsic toxic or ecotoxic activity and environmental fate. Potential minor impact on specific endpoints will be discussed in the specific endpoint sections.
The read-across hypothesis is based on structural similarity of target and source substances. Based on the available experimental data, including key physico-chemical properties and data from toxicokinetic, acute toxicity, irritation, sensitisation, genotoxicity and repeated dose toxicity studies, the read-across strategy is supported by a quite similar toxicological profile of all five substances.
The respective data are summarised in the data matrix; robust study summaries are included in the Technical Dossier in the respective sections.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
see "General Justification for Read-Across" attached to IUCLID section 13
3. ANALOGUE APPROACH JUSTIFICATION
see "General Justification for Read-Across" attached to IUCLID section 13
4. DATA MATRIX
see "General Justification for Read-Across" attached to IUCLID section 13 - Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across: supporting information
- Key result
- Duration:
- 14 d
- Dose descriptor:
- LC0
- Effect conc.:
- >= 846 mg/kg soil dw
- Nominal / measured:
- nominal
- Conc. based on:
- act. ingr.
- Basis for effect:
- mortality
- Duration:
- 14 d
- Dose descriptor:
- LC0
- Effect conc.:
- >= 380 mg/kg soil dw
- Nominal / measured:
- nominal
- Conc. based on:
- act. ingr.
- Basis for effect:
- mortality
- Conclusions:
- As there were no effects observed in both studies, it is justified to use the LC0 of 846 mg a.i./kg soil dw for chemical safety assessment. The obtained results were considered to be valid for the AAPBs.
Referenceopen allclose all
The acute toxicity of C8 -18 AAPB towards the earthworm Eisenia fetida was investigated in a study conducted according to OECD Guideline 207 (Earthworm, Acute Toxicity Tests) and EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test). No mortality was observed even in the highest concentration tested (14 d LC0 (NOEC)>=1000 mg product/kg dry soil). No effects on body weight were found (14 d-EC0>=1000 mg product/kg dry soil). Moreover, no abnormal behaviour of the test organisms or other symptoms of toxicity were recorded in worms at any of the test treatments.
Description of key information
Two acute toxicity studies towards the earthworm Eisenia fetida are available.
Key value for chemical safety assessment
- Short-term EC50 or LC50 for soil macroorganisms:
- 846 mg/kg soil dw
Additional information
Adequate and reliable data on the acute toxicity towards soil macroorganisms(Eisenia fetida) are available for the target substance C8-18 AAPB as well as the closely related source substance C8-18 and C18 unsatd. AAPB.
A justification for read-across is given below.
The acute toxicity of C8-18 AAPB towards the earthworm Eisenia fetida was investigated in a study conducted according to OECD Guideline 207 (Earthworm, Acute Toxicity Tests) and EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test). At total 40 animals per concentration step were exposed to nominal concentrations of 0 (control), 63, 125, 250, 500, and 1000 mg product/kg dry soil for 14 d. No mortality and no effects on body weight were observed even in the highest concentration tested (14 d LC0 ≥ 1000 mg product/kg dry soil; 14 d LC0 ≥ 380 mg a. i /kg dry soil assuming an active matter content of 38 %). Moreover, no abnormal behaviour of the test organisms or other symptoms of toxicity were recorded in worms at any of the test treatments.
A second study, conducted as limit test, the acute toxicity of Coco AAPB towards Eisenia fetida was investigated according to EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test). 40 Animals were exposed to 1000 mg/kg dry residue of test material (sole concentration tested) over a 14-d period. The 14 d LC0was determined to be ≥ 1000 mg dry residue/kg soil dry weight (corresponding to ≥ 846 mg active matter/kg soil dry weight and ≥ 2857 mg product/kg soil dry weight.
Conclusion
As there were no effects observed in both studies, it is justified to use the LC0 of 846 mg a.i./kg soil dw for chemical safety assessment. The obtained results were considered to be valid for the AAPBs.
Justification for read-across
For details on substance identity and detailed (eco)toxicological profiles, please refer also to the general justification for read-across given at the beginning of the CSR and attached as pdf document to IUCLID section 13.
This read-across approach is justified based on structural similarities. All AAPBs contain the same functional groups. Thus a common mode of action can be assumed.
The only deviation within this group of substances is a minor variety in their fatty acid moiety (chain length and degree of unsaturation), which is not expected to have a relevant impact on intrinsic ecotoxicological properties.
a. Structural similarity and functional groups
Alkylamidopropyl betaines (AAPBs) are – with the exception of C12 AAPB - UVCB substances (Substances of Unknown or Variable composition, Complex reaction products or Biological materials), which are defined as reaction products of natural fatty acids or oils with dimethylaminopropylamine and further reaction with sodium monochloroacetate. AAPBs are amphoteric surfactants, which are characterized by both acidic and alkaline properties.
Their general structure is:
R-C(O)-NH-(CH2)3-(N(CH3)2)+-CH2-C(O)O-
R = fatty acid moiety
The fatty acids have a mixed, slightly varying composition with an even numbered chain length from C8 to C18. Unsaturated C18 may be included. Consequently, the AAPBs differ by their carbon chain length distribution and the degree of unsaturation in the fatty acid moiety. However, Lauramidopropyl betaine (C12 fatty acid derivate) is the major ingredient of all AAPBs covered by this justification as listed in table 1 “Substance identities” of the general justification for read-across.
The substances under evaluation share structural similarities with common functional groups (quaternary amines, amide bonds and carboxymethyl groups), and fatty acid chains with differences in chain length and degree of saturation.
b. Differences
Differences in ecotoxicity of the AAPBs could potentially arise from the following facts:
-Different amounts of different carbon chain lengths (carbon chain length distribution):
Higher amounts of higher chain lengths and corresponding lower amounts of lower chain length could result in a rising average lipophilicity. However, the main component for all AAPBs is C12 AAPB. Relevant effects on ecotoxicity are not to be expected.
- Different amounts of unsaturated fatty ester moieties:
Effects may be expected for e.g. physical state, but are not considered to be of relevance for ecotoxicity.
Comparison of toxicity datato soil macroorganisms
Endpoints |
Source substance |
Target substance |
|
C8-18 and C18 unsatd. AAPB |
C8-18 AAPB |
Toxicity to soil macroorganisms except arthropods |
key Toxicity to soil macroorganisms except arthropods: 61789-40-0_9.4.1_Hüls_1995_EEC 88-302 C8
key study
EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test), Eisenia fetida, laboratory study,
Reliability: 2 (reliable with restrictions), GLP |
key_Toxicity to soil macroorganisms except arthropods.97862-59-4_9.4.1_Acute Earthworm_Unilever-A23-KAW030412_OECD 207
EU Method C.8 (Toxicity for Earthworms: Artificial Soil Test), Eisenia fetida, laboratory study,
Reliability: 1 (reliable without restriction), GLP |
No effects were observed in both studies. The 14 d LC0 was >/=846 mg a.i./kg soil dw(nominal).
Quality of the experimental data of the analogues:
The available data are adequate and sufficiently reliable to justify the read-across approach.
The studies were performed according toEU Method C.8 and werereliable or reliable with restrictions (RL1-2, GLP).
The test materials used in the respective studies represent the source substance as described in the hypothesis in terms of substance identity and minor constituents.
Overall, the study results are adequate for the purpose of classification and labelling and risk assessment.
Conclusion
Based on structural similarities of the target and source substancesas presented above and in more detail in the general justification for read across, it can be concluded that the available data from the source substanceC8-18 and C18 unsatd. AAPB are also valid for the target substance C8-18 AAPB.
The 14 d LC0 of AAPBs to the earthworm Eisenia fetida was >/=846 mg a.i./kg soil dw(nominal).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
