Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: - | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in mammalian cells
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 08 January 2015 to 14 April 2015
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Compliant with GLP and testing guidelines; coherence among data, results and conclusions.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
- Deviations:
- no
- GLP compliance:
- yes
- Type of assay:
- mammalian cell gene mutation assay
Test material
- Test material form:
- solid: particulate/powder
- Remarks:
- migrated information: powder
- Details on test material:
- Test item: Disperse Blue CVG
Constituent 1
Method
- Target gene:
- The test item Disperse Blue CVG was examined for mutagenic activity by assaying for the induction of 6-thioguanine resistant mutants in Chinese hamster V79 cells after in vitro treatment.
6-thioguanine can be metabolised by the enzyme hypoxanthine-guaninphosphoribosyl-transferase (HPRT) into nucleotides, which are used in nucleic acid synthesis resulting in the death of HPRT-competent cells. HPRT-deficient cells, which are presumed to arise through mutations in the HPRT gene, cannot metabolise 6-thioguanine and thus survive and grow in its presence.
Species / strain
- Species / strain / cell type:
- Chinese hamster lung fibroblasts (V79)
- Details on mammalian cell type (if applicable):
- - Type and identity of media: EMEM medium supplemented with 10% Foetal Calf Serum (EMEM Complete).
- Properly maintained: yes; permanent stock of V79 cells are stored in liquid nitrogen and subcoltures are prepared from the frozen stocks for experimental use.
- Periodically checked for Mycoplasma contamination: yes
- The karyotype, generation time, plating efficiency and mutation rates (spontaneous and induced) have been checked in this laboratory.
- Periodically "cleansed" against high spontaneous background: yes
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 tissue fraction: Species: Rat Strain: Sprague Dawley Tissue: Liver Inducing Agents: Phenobarbital – 5,6-Benzoflavone Producer: MOLTOX, Molecular Toxicology, Inc. Batch Numbers: 3332, 3350 and 3417
- Test concentrations with justification for top dose:
- A preliminary cytotoxicity assay was performed at the following dose levels: 19.6, 9.80, 4.90, 2.45, 1.23, 0.613, 0.306, 0.153 and 0.0766 µg/mL.
Two independent assays for mutation to 6-thioguanine resistance were performed at the following dose levels:
Main I (+S9): 10.0, 5.00, 2.50, 1.25 and 0.625 µg/mL
Main I (-S9): 5.00, 2.50, 1.25, 0.625, and 0.313 µg/mL
Main II (+S9): 10.0, 6.25, 3.91, 2.44, 1.53 and 0.954 µg/mL
Main II (-S9): 10.0, 6.25, 3.91, 2.44, 1.53 and 0.954 µg/mL - Vehicle / solvent:
- Test item solutions were prepared using dimethylsulfoxide (DMSO).
Controls
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- 7,12-dimethylbenzanthracene
- ethylmethanesulphonate
- Details on test system and experimental conditions:
- A preliminary cytotoxicity test was undertaken in order to select appropriate dose levels for the mutation assays.
Treatments were performed both in the absence and presence of S9 metabolism; a single culture was used at each test point and positive controls were not included.
Two Mutation Assays were performed including negative and positive controls, in the absence and presence of S9 metabolising system.
Duplicate cultures were prepared at each test point, with the exception of the positive controls which were prepared in a single culture. On the day before the experiment, sufficient numbers of 75 cm2 flasks were inoculated with 2 million freshly trypsinised V79 cells from a common pool. The cells were allowed to attach overnight prior to treatment. Following treatment, the cultures were incubated at 37°C for three hours. At the end of the incubation period, the treatment medium was removed and the cell monolayers were washed with PBS. Fresh complete medium was added to the flasks which were then returned to the incubator at 37°C in a 5% CO2 atmosphere (100% nominal relative humidity) to allow for expression of the mutant phenotype.
Determination of survival: The following day, the cultures were trypsinised and an aliquot was diluted and plated to estimate the viability of the cells.
Subculturing: On Day 3, the cell populations were subcultured in order to maintain them in exponential growth. When Day 8 is used as expression time, subculturing was performed on Day 4 and Day 6.
Determination of mutant frequency : A single expression time was used for each experiment: Day 6 in Main Assay I and Day 8 in Main Assay II. At the expression time, each culture was trypsinised, resuspended in complete medium and counted by microscope. After dilution, an estimated 1 x 10^5 cells were plated in each of five 100 mm tissue culture petri dishes containing medium supplemented with 6-thioguanine. These plates were subsequently stained with Giemsa solutions and scored for the presence of mutants. After dilution, an estimated 200 cells were plated in each of three 60 mm tissue culture petri dishes. These plates were used to estimate Plating Efficiency (P.E.). - Evaluation criteria:
- EVALUATION CRITERIA:
For a test item to be considered mutagenic in this assay, it is required that:
- There is a five-fold (or more) increase in mutation frequency compared with the solvent controls, over two consecutive doses of the test item. If only the highest practicable dose level (or the highest dose level not to cause unacceptable toxicity) gives such an increase, then a single treatment-level will suffice.
- There must be evidence for a dose-relation (i.e. statistically significant effect in the ANOVA analysis). - Statistics:
- The results of these experiments were subjected to an Analysis of Variance in which the effect of replicate culture and dose level in explaining the observed variation was examined.
For each experiment, the individual mutation frequency values at each test point were transformed to induce homogeneous variance and normal distribution. The appropriate transformation was estimated using the procedure of Snee and Irr (1981), and was found to be y = (x + a)b where a = 0 and b = 0.275. A two way analysis of variance was performed (without interaction) fitting to two factors:
- Replicate culture: to identify differences between the replicate cultures treated.
- Dose level: to identify dose-related increases (or decreases) in response, after allowing for the effects of replicate cultures and expression time.
The analysis was performed separately with the sets of data obtained in the absence and presence of S9 metabolism.
Results and discussion
Test results
- Species / strain:
- Chinese hamster lung fibroblasts (V79)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- Survival after treatment: No relevant toxicity was observed at any concentration tested, in any experiment in the absence or presence of S9 metabolism.
Mutation results: No relevant increases over the spontaneous mutation frequency were observed in any experiment, at any treatment level either in the absence or presence of S9 metabolic activation. Analysis of variance indicated that dose level was not a significant factor in explaining the observed variation in the data, in the absence and presence of S9 metabolism, both in Main Assay I and II. Replicate culture was a significant factor (p < 0.05%) in explaining the observed variation in the data, in Main Assay I in the absence of S9 metabolism. Mutation frequencies were generally higher in one of the replicate cultures.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
It is concluded that Disperse Blue CVG does not induce mutation in Chinese hamster V79 cells after in vitro treatment, in the absence or presence of S9 metabolic activation, under the reported experimental conditions. - Executive summary:
The test item Disperse Blue CVG was examined for mutagenic activity by assaying for the induction of 6-thioguanine resistant mutants in Chinese hamster V79 cells after in vitro treatment. Experiments were performed both in the absence and presence of metabolic activation, using liver S9 fraction from rats pre-treated with phenobarbitone and betanaphthoflavone. Test item solutions were prepared using dimethylsulfoxide (DMSO). A preliminary cytotoxicity assay was performed. Based on solubility features, the test item was assayed, in the absence and presence of S9 metabolism, at a maximum dose level of 19.6 µg/mL and at a wide range of lower dose levels: 9.80, 4.90, 2.45, 1.23, 0.613, 0.306, 0.153 and 0.0766 µg/mL. No relevant toxicity was observed at any concentration tested, in the absence or presence of S9 metabolism. Precipitation of the test item was noted starting from 0.613 µg/mL, in the absence of S9 metabolism, and from 4.90 µg/mL, in the presence of S9 metabolism; a coloured film, adhering to the flask surface, was noted starting from 0.613 µg/mL, in the absence of S9 metabolism.
Two independent assays for mutation to 6-thioguanine resistance were performed at the following dose levels:
Main I (+S9): 10.0, 5.00, 2.50, 1.25 and 0.625 µg/mL
Main I (-S9): 5.00, 2.50, 1.25, 0.625, and 0.313 µg/mL
Main II (+S9): 10.0, 6.25, 3.91, 2.44, 1.53 and 0.954 µg/mL
Main II (-S9): 10.0, 6.25, 3.91, 2.44, 1.53 and 0.954 µg/mL
No reproducible five-fold increases in mutant numbers or mutant frequency were observed following treatment with the test item at any dose level, in the absence or presence of S9 metabolism. Negative and positive control treatments were included in each mutation experiment in the absence and presence of S9 metabolism. Marked increases were obtained with the positive control treatments indicating the correct functioning of the assay system. It is concluded that Disperse Blue CVG does not induce gene mutation in Chinese hamster V79 cells after in vitro treatment in the absence or presence of S9 metabolic activation, under the reported experimental conditions.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
Welcome to the ECHA website. This site is not fully supported in Internet Explorer 7 (and earlier versions). Please upgrade your Internet Explorer to a newer version.
This website uses cookies to ensure you get the best experience on our websites.
Find out more on how we use cookies.