Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 220-977-9 | CAS number: 2956-12-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
TERRESTRIAL FATE:
S-allyl O-pentyl dithiocarbonate is used
in the mining industry as flotation agents as a fine collector for
metallic copper, molybdenite, and sulfidized base metal oxides.
The amount of S-allyl O-pentyl dithiocarbonate used is very small
relative to the quantity of ore treated, being approximately 2 to 50
g/tonne of ore.
The flotation process is fully automated. The process takes place in open tanks. However, the concentration of S-allyl O-pentyl dithiocarbonate in the flotation tank is low and, therefore, the release of Carbon monoxide; carbon dioxide; oxides of nitrogen; oxides of sulphur (includes sulphur di and tri oxides) would be expected to be low.
Air monitoring data, although limited and of poor quality, indicate that the atmospheric levels of carbon dioxide; oxides are below 10 ppm in the flotation areas. The risk to workers during the flotation process is considered to be low.
S-allyl O-pentyl dithiocarbonate was hydrolytically stable (half life > 1 year) specified by the OECD Guidelines. This substance has a limited potential to bioaccumulate (based on log Kow used by BCF estimates: 73.06 and predicted bioconcentration factors, log BCF = 1.864 (EPIWIN/BCF Program).
S-allyl O-pentyl dithiocarbonate is not expected to contaminate the environment where ore tailings are confined to well constructed tailings dams. Most will be retained on sulphide minerals and destroyed when they are dried after flotation. Minor residues that remain associated with tailings will be destroyed by hydrolysis intailings dams.
The log of the adsorption coefficient (KOC) of S-allyl O-pentyl dithiocarbonate was estimated to be log KOC = 2.1858 which is equal to a KOC value of 153.4 using the KOCWIN v2.00 QSARmethod. This value indicates that S-allyl O-pentyl dithiocarbonate will be adsorbed by organic carbon in soil.
S-allyl O-pentyl dithiocarbonate can be classified to be of very high mobility in soil according these results and does not have a high potential for adsorption to soil. S-allyl O-pentyl dithiocarbonate adsorbs strongly to sulphide minerals but has less affinity for surfaces in general. The KOC value of 153.4 also suggest this conclusion.
The estimated Henrys Law Constant (25 deg C) measured by calculation from EPI SuiteTM v4.1, HENRYWIN v3.20 Program was 1.425E-005 atm-m3/mole (1.444E+000 Pa-m3/mole).
This is Exposure Assessment Tools and Models made from EPA (Environmental Protection Agency).
Xanthates and xanthate estershave not been subjected to regulatory action in any country.The chemical is not listed on the Hazardous Substances Information System (HSIS) .No known restrictions have been identified.
S-allyl O-pentyl dithiocarbonate is used
in the mining industry as flotation agents as a fine collector for
metallic copper, molybdenite, and sulfidized base metal oxides.
The amount of S-allyl O-pentyl dithiocarbonate used is very small
relative to the quantity of ore treated, being approximately 2 to 50
g/tonne of ore.
The flotation process is fully automated. The process takes place in open tanks. However, the concentration of S-allyl O-pentyl dithiocarbonate in the flotation tank is low and, therefore, the release of Carbon monoxide; carbon dioxide; oxides of nitrogen; oxides of sulphur (includes sulphur di and tri oxides) would be expected to be low.
Air monitoring data, although limited and of poor quality, indicate that the atmospheric levels of carbon dioxide; oxides are below 10 ppm in the flotation areas. The risk to workers during the flotation process is considered to be low.
Concentrations of S-allyl O-pentyl dithiocarbonate likely to be found in the tailings slurry may be moderately toxic to aquatic fauna. Such waste streams should therefore not be discharged to waterways.
When suitable precautions are taken to avoid entry of tailings to waterways, the environmental risk of S-allyl O-pentyl dithiocarbonate can be described as minimal in view of the low environmental exposure and limited persistence.
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.