Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 282-780-4 | CAS number: 84418-68-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- PNEC aqua (freshwater)
- PNEC value:
- 89.6 µg/L
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
Marine water
- Hazard assessment conclusion:
- PNEC aqua (marine water)
- PNEC value:
- 26.5 µg/L
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
STP
- Hazard assessment conclusion:
- PNEC STP
- PNEC value:
- 434.8 µg/L
- Assessment factor:
- 1
- Extrapolation method:
- assessment factor
Sediment (freshwater)
- Hazard assessment conclusion:
- PNEC sediment (freshwater)
- PNEC value:
- 512.2 mg/kg sediment dw
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
Sediment (marine water)
- Hazard assessment conclusion:
- PNEC sediment (marine water)
- PNEC value:
- 245.7 mg/kg sediment dw
- Assessment factor:
- 1
- Extrapolation method:
- equilibrium partitioning method
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- PNEC soil
- PNEC value:
- 154.8 mg/kg soil dw
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- PNEC oral
- PNEC value:
- 0.02 g/kg food
- Assessment factor:
- 90
Additional information
The fate and toxicity of zinc neodecanoate, basic in the environment is most accurately evaluated by separately assessing the fate of its constituents zinc and neodecanoate.
Metal carboxylates are substances consisting of a metal cation and a carboxylate anion.In the water solubility test according to OECD test 105 of zinc neodecanoate, basic a solubility of 0.776 g/L at pH 6.81 was determined. Thus, zinc neodecanoate, basic is considered to be soluble and expected to dissociate completely under environmental conditions resulting in zinc and neodecanoate ions. The respective dissociation is reversible, and the ratio of the salt /dissociated ions is dependent on the metal-ligand dissociation constant of the salt, the composition of the solution and its pH.
A metal-ligand complexation constant of zinc neodecanoate, basic could not be identified. Data for zinc appear to be generally limited. However, zinc tends to form complexes with ionic character as a result of their low electronegativity. Further, the ionic bonding of zinc is typically described as resulting from electrostatic attractive forces between opposite charges, which increase with decreasing separation distance between ions.
Based on an analysis by Carbonaro et al. (2011) of monodentate binding of zinc to negatively-charged oxygen donor atoms, including carboxylic functional groups, monodentate ligands such as neodecanoate are not expected to bind strongly with zinc. Accordingly, protons will always out-compete zinc ions for complexation of monodentate ligands given equal activities of free zinc and hydrogen ions. The metal-ligand formation constants (log KML) of zinc with other carboxylic acids, i.e. acetic and benzoic acid, ranging from 0.56 to 1.59 (Bunting & Thong, 1969), further point to a low strength of the monodentate bond between carboxyl groups and zinc.
The analysis by Carbonaro & Di Toro (2007) suggests that the following equation models monodentate binding to negatively-charged oxygen donor atoms of carboxylic functional groups:
log KML= αO* log KHL+ βO; where
KML is the metal-ligand formation constant, KHL is the corresponding proton–ligand formation constant, and αO and βO are termed the slope and intercept, respectively. Applying the equation and parameters derived by Carbonaro & Di Toro (2007) and the pKa of neodecanoic acid of 4.69 results in:
log KML= 0.301 * 4.69 + 0.015
log KML= 1.43 (estimated zinc neodecanoate, basic formation constant).
Thus, it may reasonably be assumed that based on the estimated zinc-neodecanoate formation constant, the respective behaviour of the dissociated zinc cations and neodecanoate anions in the environment determine the fate of zinc neodecanoate, basic upon dissolution with regard to (bio)degradation, bioaccumulation, partitioning resulting in a different relative distribution in environmental compartments (water, air, sediment and soil) and subsequently its ecotoxicological potential.
In the assessment of enviromental toxicity of zinc neodecanoate, basic, read-across to the assessment entities soluble zinc substances and neodecanoic acid is applied since the ions of zinc neodecanoate, basic determine its environmental fate. Since zinc cations and neodecanoate anions behave differently in the environment, including processes such as stability, degradation, transport and distribution, a separate assessment of the environmental fate of each assessment entity is performed. Please refer to the data as submitted for each individual assessment entity.
In order to evaluate the environmental fate and toxicity of the substance zinc neodecanoate, basic, information on the assessment entities zinc cations and neodecanoate anions were considered. For a documentation and justification of that approach, please refer to the separate document attached to section 13, namely Read Across Assessment Report for zinc neodecanoate, basic.
Reference:
Carbonaro RF & Di Toro DM (2007) Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms. Geochimica et Cosmochimica Acta 71: 3958–3968.
Conclusion on classification
Aquatic toxicity studies with zinc neodecanoate, basic are not available. The fate and toxicity of zinc neodecanoate, basic in the environment is most accurately evaluated by separately assessing the fate of its moieties zinc and neodecanoate. Zinc neodecanoate, basic dissolves and dissociates into zinc and neodecanoate ions upon contact with an aqueous medium. Therefore, the aquatic hazard potential is assessed based on the toxicity data available for the assessment entities zinc and neodecanoate ions since the ions of zinc neodecanoate, basic determine its environmental fate and toxicity.
Acute (short-term) toxicity: EC/LC50 values of 3 trophic levels (algae, invertebrates and fish) for neodecanoic acid are > 100 mg/L and well above the classification cut-off value for acute (short-term) aquatic hazard category 1 of 1 mg/L. The acute aquatic hazard assessment is based on the most toxic moiety, i.e. the zinc cation, and acute ecotoxicity reference values of zinc are recalculated for zinc neodecanoate, basic based on a maximum zinc content of 23%.
Zinc neodecanoate, basic meets based on i) the acute aquatic ecotoxicity values of 136 µg Zn/L and 413 µg Zn/L for the zinc ion at pH 8 and pH 6 respectively; ii) the maximum zinc content of zinc neodecanoate, basic of 23%, and iii) the resulting acute ecotoxicity reference value of 591.3 µg/L zinc neodecanoate, basic at pH 8 as worst case, classification criteria of acute (short-term) aquatic hazard Category 1 of Regulation (EC) No 1272/2008 with an acute M-Factor of 1.
Chronic (long-term) toxicity: Regarding aquatic toxicity data for neodecanoic acid, reliable data are available for invertebrates and fish and QSAR-based estimates for daphnids and fish. The respective NOEC/EC10 values are > 1 mg/L. Regarding algae, an EC10 or NOEC is not available for neodecanoate. However, based on the fact that the EC50 for growth rate of algae is > 100 mg/L, we may assume that it is unlikely that the EC10/NOEC < 1 mg/L.Thus, EC10/NOEC values of neodecanoate are well above the classification cut-off value for (chronic) long-term aquatic hazard categories of 1 mg/L. The long-term (chronic) aquatic hazard assessment is based on the most toxic moiety, i.e. the zinc cation, and chronic ecotoxicity reference values of zinc are recalculated for zinc neodecanoate, basic based on a maximum zinc content of 23%.
Zinc neodecanoate, basic meets based on i) the lowest chronic aquatic ecotoxicity reference value observed for the algae Pseudokirchneriella subcapitata (19 µg Zn/L) at neutral pH; ii) the maximum zinc content of zinc neodecanoate, basic of 23%, and iii) the resulting chronic ecotoxicity reference value of 82.6 µg/L zinc neodecanoate, basic, classification criteria of long-term aquatic hazard of Regulation (EC) No 1272/2008.
The chronic ecotoxicity reference value of 82.6 µg/L is compared with the criteria for long-term aquatic hazard classification, taking into account whether the zinc, the toxic moiety of concern, is considered rapidly degradable or not.
The concept of “Degradability” was developed for organic substances and is not applicable to inorganic zinc substances. As a surrogate approach for assessing “degradability”, the concept of “removal from the water column” was developed to assess whether or not a given metal ion would remain present in the water column upon addition (and thus be able to excert a chronic effect) or would be rapidly removed from the water column. In this concept, “rapid removal” (defined as >70% removal within 28 days) is considered as equivalent to “rapidly degradable”. The rapid removal of zinc from the water column is documented in the section „Environmental fate“. Consequently, zinc is considered as equivalent to being ‘rapidly degradable” in the context of classification for chronic aquatic effects. Based on the chronic ecotoxicity reference value of 82.6 µg/l, zinc neodecanoate, basic meets classification criteria of long-term aquatic hazard Category 2 in accordance with Table 4.1.0 (b) (ii) of Regulation (EC) No 1272/2008.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.