Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 215-224-6 | CAS number: 1314-18-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Strontium chloride have been tested in bacterial reverse mutation assay. The tests show a negative response, thus strontium peroxide is considered not to be classified as mutagenic.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- The study was performed between 10 December 1996 and 03 February 1997.
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- guideline study without detailed documentation
- Justification for type of information:
- REPORTING FORMAT FOR THE ANALOGUE APPROACH
Further information in a detailed justification report is included as attachment to the same record.
1. HYPOTHESIS FOR THE ANALOGUE APPROACH
For the determination of analogue in this read-across approach, the following points have been considered:
- Chemical speciation and valency (common strontium cation: Sr2+).
- The water solubility, as it provides a first indication of the availability of the metal ion in the different compartments of interest. The most simplistic approach to hazard evaluation is to assume that the specific metal-containing compound to be evaluated shows the same hazards as the most water-soluble compounds.
- In fluids of organisms and in in aqueous media, dissociation of strontium peroxide takes place immediately, resulting in formation of strontium cations (Sr2+) and oxygen. Thus, any ingestion or absorption of strontium peroxide by living organisms, in case of systemic consideration, will inevitably result of exposure to the dissociation products.
- Oxygen (formed during the dissociation of strontium peroxide) is of low (eco)toxicological relevance when ingested and taken up systemically. Thus, any possible toxicological or ecotoxicological effect triggered by strontium peroxide exposure can be attributed to strontium.
- Counter ions: the assumption that the metal ion is responsible for the common property or effect implies that the toxicity or ecotoxicity of the counter ion present in the compound will be largely irrelevant in producing the effects to be assessed.
- Likely common breakdown products via physical and/or biological processes for the targeted substance (strontium peroxide) and the analogues identified cannot present strong differences since the structures are very simple and very similar (formation of Sr2+ ion).
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
Source chemical information is provided in the “source” endpoint. No impurity affecting the classification is reported for the source chemical.
Information on the impurities of the target chemical are detailed in the attached report.
3. ANALOGUE APPROACH JUSTIFICATION
The main hypothesis for the analogue approach are verified. They are presented in the detailed report attached. The experimental data performed on the substance (tests performed in this REACH registration dossier on strontium peroxide) confirms the analogue approach performed (same results on analogues).
4. DATA MATRIX
A data matrix is presented in the detailed report attached. - Reason / purpose for cross-reference:
- read-across source
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Remarks:
- No significant increase in the frequency of revertant colonies of bacteria were recorded for any of the strains of S. typhimurium used, at any dose level.
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- No toxicity was exhibited to any of the strains tested.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Remarks:
- No significant increase in the frequency of revertant colonies of bacteria were recorded for any of the strains of S. typhimurium used, at any dose level.
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- No toxicity was exhibited to any of the strains tested.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Remarks:
- No significant increase in the frequency of revertant colonies of bacteria were recorded for any of the strains of S. typhimurium used, at any dose level.
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- No toxicity was exhibited to any of the strains tested.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Remarks:
- No significant increase in the frequency of revertant colonies of bacteria were recorded for any of the strains of S. typhimurium used, at any dose level.
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- No toxicity was exhibited to any of the strains tested.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1538
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Remarks:
- No significant increase in the frequency of revertant colonies of bacteria were recorded for any of the strains of S. typhimurium used, at any dose level.
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- No toxicity was exhibited to any of the strains tested.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
No details are reported.
RANGE-FINDING/SCREENING STUDIES:
The dose range of the test material used in the preliminary toxicity study was 0, 50, 150, 500, 1500 and 5000 µg/plate. The test material was non-toxic to the strain of S. typhimurium TA100.
COMPARISON WITH HISTORICAL CONTROL DATA:
no data
ADDITIONAL INFORMATION ON CYTOTOXICITY:
No further details are reported. - Conclusions:
- Interpretation of results : negative
In conclusion, under the test conditions described the test material, strontium chloride-6-hydrate extra pure, was considered to be non-mutagenic either with or without metabolic activation at any concentration tested. The result of this test is considered reliable and it is used in a read-across approach for assessing the genetic toxicity of strontium peroxide. - Executive summary:
S. typhimurium strains TA1535, TA1537, TA1538, TA98 and TA100 were treated with strontium chloride using the Ames plate incorporation method at 5 dose levels, both with and without metabolic activation. The dose range was determined in a preliminary toxicity assay and was 50 to 5000 µg/plate in the first experiment. The experiment was repeated on a separate day using the same dose range as experiment 1.
The test material caused no visible reduction in the growth of the bacterial lawn at any of the dose levels to any of the strains of Salmonella tested. No significant increase in the frequency of revertant colonies was recorded for any of the bacterial strains with any of the concentrations tested, either with or without metabolic activation.
The result of this test is considered reliable and it is used in a read-across approach.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Additional information
Ames test: Read across from SrCl2 to strontium acetate is envisaged due to the fact that possible effects occurred could be regarded as strontium ion related effects. Both substances (SrCl2 and strontium peroxide) are "very soluble" (above 10 g/L at 20°C) in water. Hence, it could be concluded that read across is possible. Nevertheless, tests on the mutagenic potential of strontium compounds in bacteria are considered dispensable for principal considerations, since inorganic metal compounds are frequently negative in this assay due to limited capacity for uptake of metal ions (Guidance on information requirements and chemical safety assessment, Chapter R.7a, p. 565; HERAG facts sheet mutagenicity, Chapter 2.1).
Justification for classification or non-classification
Strontium peroxide could be regarded to have no mutagenicity / genotoxicity effects, tested in vitro. Hence, no classification and labelling is required.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.