Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 211-889-1 | CAS number: 705-86-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Biodegradation in water
Biodegradation study was conducted for 28-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2017). The study was performed at a temperature of 20°C. The test system included control, test chemical and reference substance. Polyseed were used as a test inoculum for the study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test chemical and reference substance. The % degradation of procedure control (reference item) was also calculated using BOD & ThOD and was determined to be 73.49% at 20 ± 1°C. Degradation of Sodium Benzoate exceeds 43.37% on 7th days & 58.43% on 14th day. The activity of the inoculum is thus verified and the test can be considered as valid. The BOD28 value of test chemical was observed to be 1.25 mgO2/mg. ThOD was calculated as 2.53 mgO2/mg. Accordingly, the % degradation of the test chemical after 28 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 49.4%. Based on the results, the test chemical, under the test conditions, was considered to be inherently biodegradable in nature.
Biodegradation in water and sediment
Estimation Programs Interface prediction model (2018) was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 24.9% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 8.66 days (208 hrs). The half-life (8.66 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 77.916 days (1870 hrs). Based on this half-life value, it indicates that test chemical is not persistent in sediment.
Biodegradation in soil
The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database. If released into the environment, 71.1% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 17.33 days (416 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.
Additional information
Biodegradation in water
Biodegradation study was conducted for 28-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2017). The study was performed at a temperature of 20°C. The test system included control, test chemical and reference substance. Polyseed were used as a test inoculum for the study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test chemical and reference substance. The % degradation of procedure control (reference item) was also calculated using BOD & ThOD and was determined to be 73.49% at 20 ± 1°C. Degradation of Sodium Benzoate exceeds 43.37% on 7th days & 58.43% on 14th day. The activity of the inoculum is thus verified and the test can be considered as valid. The BOD28 value of test chemical was observed to be 1.25 mgO2/mg. ThOD was calculated as 2.53 mgO2/mg. Accordingly, the % degradation of the test chemical after 28 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 49.4%. Based on the results, the test chemical, under the test conditions, was considered to be inherently biodegradable in nature.
Biodegradation in water and sediment
Estimation Programs Interface prediction model (2018) was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 24.9% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 8.66 days (208 hrs). The half-life (8.66 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 77.916 days (1870 hrs). Based on this half-life value, it indicates that test chemical is not persistent in sediment.
Biodegradation in soil
The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database. If released into the environment, 71.1% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 17.33 days (416 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.
On the basis of available information, the test chemical can be considered to be inherently biodegradable in nature.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.