Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 293-209-3 | CAS number: 91052-49-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Sediment toxicity
Administrative data
Link to relevant study record(s)
Description of key information
The chemical safety assessment according to Annex I does not indicate the need to conduct a test on sediment organisms.
Key value for chemical safety assessment
Additional information
No experimental data evaluating the toxicity to sediment organisms is available for Glycerides, C12-18 mono- and di- (CAS No. 91052-49-2). Since the substance is readily biodegradable, exposure of sediment organisms is the aquatic environment is unlikely. Furthermore, the substance showed no toxicity to fish up to the limit of water solubility. Effects were observed in the tests conducted with aquatic invertebrates and algae, but since they were reported to occur above the water solubility of the substance (3.3 mg/L), they are expected to be physical, due to interference of emulsified substance with test organisms. In addition, available data indicate that Glycerides, C12-C18, mono- and di- is not bioaccumulative. Based on the available information, toxicity to sediment organisms is not expected to be of concern.
Intrinsic properties and fate
Glycerides, C12-18 mono- and di- (CAS No. 91052-49-2) is readily biodegradable.According to the Guidance on information requirements and chemical safety assessment, Chapter R.7b, readily biodegradable substances can be expected to undergo rapid and ultimate degradation in most environments, including biological Sewage Treatment Plants (STPs)(ECHA, 2012). Therefore, after passing through conventional STPs, only low concentrations of this substance are likely to be (if at all) released into the environment.
The water solubility of Glycerides, C12-C18, mono- and di- was determined to be 3.3 mg/L. On the other hand, the estimated log Koc values (1.46-7.96) indicate that the substance has potential for adsorption to solid particles. Therefore, besides being extensively biodegraded in STPs (due to its ready biodegradability), a significant degree of removal of this substance from the water column due to adsorption to sewage sludge can be expected (Guidance on information requirements and chemical safety assessment, Chapter R.7a (ECHA, 2012)). Discharged concentrations into the aquatic compartment are therefore likely to be low.
Considering the above information, the availability of Glycerides, C12-18 mono- and di- (CAS No. 91052-49-2) in the sediment environment is expected to be very low, which reduces the probability of sediment organisms exposure.
Aquatic toxicity
The acute toxicity test performed on fish showed no adverse effects occurred in the range of the water solubility of the substance (3.3 mg/L). Effects occurred above the water solubility of the substance in the tests conducted with aquatic invertebrates and algae. However, the WAFs in these two tests, in which effects were observed later on, were reported to be turbid. The WAFs were not filtered for the final tests. Therefore, physical effects due to interference with emulsified test substance with daphnids and algae cannot be excluded.
The obtained results indicate that Glycerides, C12-18 mono- and di- (CAS No. 91052-49-2) is likely to show no or only low toxicity to sediment organisms as well.
Metabolism/Bioaccumulation
After uptake, Glycerides, C12-C18, mono- and di- (CAS No. 91052-49-2) is expected to be enzymatically hydrolyzed by carboxylesterases. QSAR estimations using BCFBAF v3.01 support the expected rapid biotransformation of this substance with BCF/BAF ranging from 0.89 to 38.3 L/kg.
Rapid metabolization of Glycerides, C12-C18, mono- and di- in aquatic organisms is expected. Enzymatic hydrolysis is expected to result in C12-18 fatty acids and glycerol as transformation products. Part of the free fatty acids will be re-sterified with glycerol and partial acyl glycerols to form triglycerides that will be stored as long-term energy reserves (Tocher, 2003). Glycerol is naturally present in animal and vegetable fats, rarely found in free state (mostly combined with fatty acids forming triglycerides)(ed. Knothe, van Gerpen and Krahl, 2005). If freely available in aquatic organisms, it will not bioaccumulate in view of its log Kow value of -1.76 (OECD SIDS, 2002). Especially in periods in which the energy demand is high (reproduction, migration, etc.), glycerides are mobilized from the storage sites as source of fatty acids. Fatty acid catabolism is the most important energy source in many species of fish, resulting in the release of acetyl CoA and NADH (through β-oxidation) and eventually, via the tricarboxylic cycle, the production of metabolic energy in the form of ATP. This fatty acid-catabolism pathway is the predominant source of energy related to growth, reproduction and development from egg to adult fish. A similar metabolic pathway is observed in mammals (see section 7.1.1 Basic toxicokinetics). According to the Guidance on information requirements and chemical safety assessment, Chapter R.7c (ECHA, 2012), even though ready biodegradability does not per se preclude bioaccumulation potential, generally (depending on exposure and uptake rates) ready biodegradable substances are likely to be rapidly metabolised, and therefore, concentrations stored in aquatic organisms will tend to be low.
In conclusion, low bioaccumulation potential of Glycerides, C12-C18, mono- and di- (CAS No. 91052-49-2) is expected.
Conclusion
Due to its readily biodegradable nature, extensive degradation of this substance in conventional STPs will take place and only low concentrations are expected to be released (if at all) into the environment. Once present in the aquatic compartment, further biodegradation will occur and, due to its adsorption potential, Glycerides, C12-C18, mono- and di-will be bioavailable to sediment organisms mainly via feed and contact with suspended organic particles.After uptake by sediment species, extensive and fast biotransformation of the substance by carboxylesterases into fatty acids and glycerol is expected. The supporting BCF/BAF values estimated with the BCFBAFv3.01 program, Arnot-Gobas model including biotransformation, also indicate that this substance will not be bioaccumulative (0.89-38.3 L/kg). Furthermore, based on the aquatic toxicity data, the toxicity to aquatic organisms is expected to be low (if observed at all). Therefore, Glycerides, C12-C18, mono- and di- is unlikely to pose a risk for sediment organisms in general and testing is thus omitted.
A detailed reference list is provided in the technical dossier (see IUCLID, section 13) and within the CSR.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.