Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Bioaccumulation: aquatic / sediment

Currently viewing:

Administrative data

Link to relevant study record(s)

Description of key information

The potential for bioaccumulation of Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters (CAS 68440-06-2) is assumed to be low based on all available data. 

Key value for chemical safety assessment

Additional information

Experimental bioaccumulation data are not available for Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters (CAS 68440-06-2). The high log Kow (> 10) as an intrinsic chemical property of the substance indicates a potential for bioaccumulation. However, the information gathered on environmental behaviour and metabolism, in combination with QSAR-estimated values, provide enough evidence (in accordance to the Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2), to cover the data requirements of Regulation (EC) No 1907/2006, Annex IX to state that the substance is likely to show negligible bioaccumulation potential.

Environmental behaviour

Due to the high potential for adsorption, the substance can be effectively removed in conventional sewage treatment plants (STPs) by biodegradation and by sorption to biomass. The low water solubility (16 ± 7 µg/L at 20 °C, pH 6.3) and high estimated log Kow indicate that the substance is highly lipophilic. If released into the aquatic environment, the substance undergoes extensive sorption on organic matter. Thus, the bioavailability in the water column is reduced rapidly. The relevant route of uptake of the substance in aquatic organisms is expected to be predominantly by ingestion of particle bound substance. 

Uptake/Absorption

If the substance is taken up by ingestion, absorption is expected to be low based on the molecular weight, size and structural complexity of the substance. These large and complex structures assume a high degree of conformational flexibility. Dimitrov et al. (2002) revealed a tendency of decreasing log BCF with an increase in conformational flexibility of molecules. They suggest that this effect is related to the enhancement of the entropy factor on membrane permeability of chemicals. This concludes a high probability that the substance may encounter the membrane in a conformation which does not enable the substance to permeate. Furthermore, the substance has a high molecular weight of 789.34 g/mol. Thus, it is unlikely that it is readily absorbed, due to the steric hindrance of crossing biological membranes. Following the ‘rule of 5’ (Lipinski et al., 2001), developed to identify drug candidates with poor oral absorption based on criteria regarding partitioning (log Kow > 5) and molecular weight (> 500 g/mol), the substance is considered to be poorly absorbed after oral uptake (also see Hsieh & Perkins, 1976).

This interaction between lipophilicity, bioavailability and membrane permeability is considered to be the main reasons why the relationship between the bioaccumulation potential of a substance and its hydrophobicity is commonly described by a relatively steep Gaussian curve with the bioaccumulation peak approximately at log Kow of 6-7 (e.g., see Dimitrov et al., 2002; Nendza & Müller, 2007; Arnot and Gobas 2003). Substances with log Kow values above 10, which has been calculated for the test substance, are considered to have a low bioaccumulation potential (e.g., Nendza & Müller, 2007; 2010). Furthermore, for those substances with a log Kow value > 10 it is unlikely that they reach the pass level of being bioaccumulative according to OECD criteria for the PBT assessment (BCF > 2000; ECHA, 2012).

This assumption is supported by QSAR calculations using BCFBAF v3.01 performed for Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters. BCF/BAF values of 0.89 L/kg and 0.89 L/kg were obtained (Arnot-Gobas estimate, including biotransformation, upper trophic). Even though Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters is outside the applicability domain of the model, the estimation can be used as supporting indication of low bioaccumulation potential. The model training set is only consisting of substances with log Kow values of 0.31 - 8.70. But it supports the tendency that substances with high log Kow values (> 10) have a lower potential for bioconcentration as summarized in the ECHA Guidance R.11 and they are not expected to meet the B/vB criterion (ECHA, 2012).

Conclusion

Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters (CAS 68440-06-2) is characterized by a low water solubility (16 ± 7 µg/L at 20 °C, pH 6.3), high log Kow (> 10) and high molecular weight (789.34 g/mol). Based on the physico/chemical properties such as low water solubility and high potential for adsorption a reduced availability in water is expected. The high molecular weight of the substance significantly reduces the absorption due to steric hindrance to cross biological membranes. It can be concluded that the bioaccumulation potential of Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters is negligible. BCF/BAF values estimated by QSAR (BCFBAF v3.01) also support this assumption (BCF values all well below 2000 L/kg).

Taking all these information into account, it can be concluded that bioaccumulation of Fatty acids, C18-unsatd., dimers, hydrogenated, 2-ethylhexyl esters is unlikely to occur.

A detailed reference list is provided in the CSR.