Registration Dossier

Diss Factsheets

Administrative data

Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
Experimental starting date: 24 June 2016 Experimental completion date: 28 June 2016
Reliability:
1 (reliable without restriction)

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2016
Report date:
2016

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
GLP compliance:
yes
Type of method:
effusion method: vapour pressure balance

Test material

Constituent 1
Chemical structure
Reference substance name:
O,O-dibutyl hydrogen thiophosphate, compound with 1-octylamine (1:1)
EC Number:
300-947-2
EC Name:
O,O-dibutyl hydrogen thiophosphate, compound with 1-octylamine (1:1)
Cas Number:
93964-99-9
Molecular formula:
C8H19N.C8H19O3PS
IUPAC Name:
octan-1-amine dibutyl sulfanylphosphonate
impurity 1
Chemical structure
Reference substance name:
Octylamine
EC Number:
203-916-0
EC Name:
Octylamine
Cas Number:
111-86-4
Molecular formula:
C8H19N
IUPAC Name:
octan-1-amine
Test material form:
liquid
Specific details on test material used for the study:
Information as provided by the Sponsor. The Certificate of Analysis provided by the Sponsor is presented as Annex 3 (Please see Attachment Section of this Summary).

Identification: X-19575 Phosphorothioic acid, O,O-dibutyl ester, compd. with 1-octanamine, CASRN 93964-99-9
Appearance/Physical state: Amber colored viscous liquid
Batch: X-019575-00-00
Purity: UVCB (treat as 100%)
Expiry: 01 June 2017
Storage conditions: Room temperature in the dark

Results and discussion

Vapour pressure
Temp.:
25 °C
Vapour pressure:
1.8 Pa

Any other information on results incl. tables

 Results

Runs 2 to 6 Graphs of Log10Vapor Pressure vs Reciprocal Temperature are shown in the Attachment Section of this Summary.

Recorded temperatures, mass differences and the resulting calculated values of vapor pressure are shown in the following tables:

Run 2

Table 1 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

-10

263.15

0.003800114

136.45

1.365E-07

0.189427558

-0.722556839

-9

264.15

0.003785728

154.26

1.543E-07

0.214152401

-0.669277052

-8

265.15

0.003771450

174.86

1.749E-07

0.242750479

-0.614839905

-7

266.15

0.003757280

172.73

1.727E-07

0.239793493

-0.620162606

-6

267.15

0.003743215

189.37

1.894E-07

0.262894076

-0.580219200

-5

268.15

0.003729256

209.82

2.098E-07

0.291283916

-0.535683496

-4

269.15

0.003715400

221.85

2.219E-07

0.307984638

-0.511470946

-3

270.15

0.003701647

226.71

2.267E-07

0.314731563

-0.502059702

-2

271.15

0.003687996

255.90

2.559E-07

0.355254761

-0.449460093

-1

272.15

0.003674444

279.82

2.798E-07

0.388461849

-0.410651626

0

273.15

0.003660992

291.56

2.916E-07

0.404759977

-0.392802437

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 2 gives the following statistical data using an unweighted least squares treatment.

Slope:

-2.28 x 103

Standard error in slope:

94.3

 

Intercept:

7.95

Standard error in intercept:

0.352

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -2.28 x 103/temp(K) + 7.95

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.309.

Run 3

Table 2 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

-10

263.15

0.003800114

142.47

1.425E-07

0.197784861

-0.703806954

-9

264.15

0.003785728

153.34

1.533E-07

0.212875205

-0.671874920

-8

265.15

0.003771450

177.19

1.772E-07

0.245985116

-0.609091171

-7

266.15

0.003757280

178.09

1.781E-07

0.247234546

-0.606890845

-6

267.15

0.003743215

188.19

1.882E-07

0.261255934

-0.582933836

-5

268.15

0.003729256

199.06

1.991E-07

0.276346279

-0.558546379

-4

269.15

0.003715400

205.81

2.058E-07

0.285717008

-0.544063906

-3

270.15

0.003701647

237.79

2.378E-07

0.330113441

-0.481336792

-2

271.15

0.003687996

239.67

2.397E-07

0.332723363

-0.477916703

-1

272.15

0.003674444

265.33

2.653E-07

0.368346017

-0.433744022

0

273.15

0.003660992

279.35

2.794E-07

0.387809369

-0.411381703

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 3 gives the following statistical data using an unweighted least squares treatment.

Slope:

-2.02 x 103

Standard error in slope:

94.9

 

Intercept:

7.00

Standard error in intercept:

0.354

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -2.02 x 103/temp(K) + 7.00

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.208.

Run 4

Table 3 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

-10

263.15

0.003800114

143.05

1.431E-07

0.198590049

-0.702042517

-9

264.15

0.003785728

151.99

1.520E-07

0.211001060

-0.675715364

-8

265.15

0.003771450

167.06

1.671E-07

0.231922081

-0.634657902

-7

266.15

0.003757280

176.33

1.763E-07

0.244791215

-0.611204171

-6

267.15

0.003743215

182.03

1.820E-07

0.252704276

-0.597387410

-5

268.15

0.003729256

204.15

2.042E-07

0.283412503

-0.547580994

-4

269.15

0.003715400

220.05

2.201E-07

0.305485776

-0.515009006

-3

270.15

0.003701647

227.95

2.280E-07

0.316453000

-0.499690782

-2

271.15

0.003687996

244.41

2.444E-07

0.339303697

-0.469411408

-1

272.15

0.003674444

253.95

2.540E-07

0.352547662

-0.452782162

0

273.15

0.003660992

286.99

2.870E-07

0.398415646

-0.399663614

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 4 gives the following statistical data using an unweighted least squares treatment.

Slope:

-2.09 x 103

Standard error in slope:

62.3

 

Intercept:

7.26

Standard error in intercept:

0.232

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -2.09 x 103/temp(K) + 7.26

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.232.

Run 5

Table 4 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

-10

263.15

0.003800114

138.74

1.387E-07

0.192606665

-0.715328689

-9

264.15

0.003785728

144.47

1.445E-07

0.200561373

-0.697752706

-8

265.15

0.003771450

153.62

1.536E-07

0.213263917

-0.671082618

-7

266.15

0.003757280

167.83

1.678E-07

0.232991038

-0.632660784

-6

267.15

0.003743215

180.20

1.802E-07

0.250163767

-0.601775592

-5

268.15

0.003729256

196.52

1.965E-07

0.272820108

-0.564123623

-4

269.15

0.003715400

215.27

2.153E-07

0.298849912

-0.524546868

-3

270.15

0.003701647

221.22

2.212E-07

0.307110036

-0.512705991

-2

271.15

0.003687996

230.90

2.309E-07

0.320548356

-0.494106446

-1

272.15

0.003674444

265.90

2.659E-07

0.369137323

-0.432812041

0

273.15

0.003660992

285.27

2.853E-07

0.396027846

-0.402274277

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 5 gives the following statistical data using an unweighted least squares treatment.

Slope:

-2.27 x 103

Standard error in slope:

74.6

 

Intercept:

7.89

Standard error in intercept:

0.278

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -2.27 x 103/temp(K) + 7.89

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.284.

Run 6

Table 5 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

-10

263.15

0.003800114

135.90

1.359E-07

0.188664017

-0.724310922

-9

264.15

0.003785728

140.36

1.404E-07

0.194855640

-0.710287019

-8

265.15

0.003771450

156.36

1.564E-07

0.217067739

-0.663404717

-7

266.15

0.003757280

162.34

1.623E-07

0.225369511

-0.647104837

-6

267.15

0.003743215

173.73

1.737E-07

0.241181749

-0.617655559

-5

268.15

0.003729256

193.34

1.933E-07

0.268405453

-0.571208664

-4

269.15

0.003715400

196.05

1.961E-07

0.272167628

-0.565163532

-3

270.15

0.003701647

222.52

2.225E-07

0.308914769

-0.510161327

-2

271.15

0.003687996

232.27

2.323E-07

0.322450267

-0.491537259

-1

272.15

0.003674444

245.82

2.458E-07

0.341261139

-0.466913164

0

273.15

0.003660992

260.29

2.603E-07

0.361349206

-0.442072895

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 6 gives the following statistical data using an unweighted least squares treatment.

Slope:

-2.11 x 103

Standard error in slope:

62.5

 

Intercept:

7.28

Standard error in intercept:

0.233

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -2.11 x 103/temp(K) + 7.28

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.210.

Summary of Results

The values of vapor pressure at 25 °C extrapolated from each graph are summarized in the following table:

Table 6            Summary of Vapor Pressure Data

Run

Log10[Vp(25ºC)]

2

0.309

3

0.208

4

0.232

5

0.284

6

0.210

Mean

0.249

Vapor Pressure

1.77 Pa

The test item did not change in appearance under the conditions used in the determination.

Applicant's summary and conclusion

Conclusions:
The vapor pressure of the test item has been determined to be 1.8 Pa at 25 ºC.
Executive summary:

The determination was carried out using a procedure designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008 and Method 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.

Conclusion

The vapor pressure of the test item has been determined to be 1.8 Pa at 25 ºC.