Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: - | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to reproduction
Administrative data
- Endpoint:
- two-generation reproductive toxicity
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- Experimental dates: 11/17/2006 to 8/3/2007
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Guideline, GLP
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 008
- Report date:
- 2008
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.3800 (Reproduction and Fertility Effects)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- other: EEC No. 0378-6978
- Deviations:
- no
- GLP compliance:
- yes
- Limit test:
- no
Test material
Reference
- Name:
- Unnamed
- Type:
- Constituent
- Details on test material:
- Test material: Biocide CS1135This breaks down to produce formaldehyde and 2-amino-2-methylpropanol
Test animals
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- Male and female Sprague-Dawley rats (27/sex/dose) were obtained from Charles River Laboratories INC (Portage, MI, USA), and were 6 weeks of age at study initiation. Rats were acclimated to the testing facitility prior to random assignment to dose groups, and were offered feed and water ad libitum. They were housed in rooms designed to maintain adequate environmental conditions for the species (air changes, photocycle, temperature, and relative humidity).
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- polyethylene glycol
- Details on exposure:
- Groups of 27 male and 27 female Crl:CD(SD) rats were administered the test material seven days/week via oral gavage at dose levels of 0, 20, 60, or 200 mg CS-1135/kg of body weight/day (in polyethylene glycol 400 vehicle) for approximately 10 weeks prior to breeding and continuing through breeding (two weeks), gestation (three weeks) and lactation (three weeks) for each of two generations.
- Details on mating procedure:
- Breeding of the P1 adults commencee after approximately 10 weeks of treatment. Each female was placed with a single male from the same dose level (1:1 mating) until mating occurred or two weeks had elapsed. During each breeding period, daily vaginal lavage samples were evaluated for the presence of sperm as an indication of mating. The day on which sperm was detected or a vaginal copulatory plug was observed in situ was considered GD 0. The sperm- or plug-positive (presumed pregnant) females were then separated from the male and returned to their home cage. If a breeding male died or was removed from study, a substitute partner (from the same dose group) that has already completed mating was provided, if available. If mating had not occurred after two weeks, the animals were separated without further opportunity for mating. Approximately 10 weeks after all F1 litters were weaned, F1 offspring were randomly selected to become P2 adults and were bred as described above. Cohabitation of male and female littermates was avoided.
- Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- Dose confirmation of CS-1135 in polyethylene glycol -400 (PEG) analyzed using gas chromatography with electron impact mass spectrometry detection (GC/EI/MSD) and quantified using isotopically labeled internal standard. Dose confirmation within +/- 14% of nominal concentrations
- Duration of treatment / exposure:
- 10 weeks prior to breeding and continuing through breeding (two weeks), gestation (three weeks) and lactation (three weeks) for each of two generations. F1 pups were exposed indirectly through milk and by gavage beginning at weaning.
- Frequency of treatment:
- once daily, 7-days/week
Doses / concentrations
- Remarks:
- Doses / Concentrations:0, 20, 60, 200 mk/kg/dayBasis:nominal conc.
- No. of animals per sex per dose:
- 27/sex/group
- Control animals:
- yes, concurrent vehicle
Examinations
- Parental animals: Observations and examinations:
- Cage-side examinations were conducted at least twice daily. This examination was typically performed with the animals in their cages and was designed to detect significant clinical abnormalities that were clearly visible upon a limited examination, and to monitor the general health of the animals. In addition, all animals were observed for morbidity, mortality, and the availability of feed and water at least twice daily. Any animals found dead were necropsied as soon as practical. Cage-side examinations were be conducted on dams and their litters, at least twice daily.Clinical examinations were conducted on all males pre-exposure and weekly throughout the study. Clinical examinations were conducted on all females pre-exposure and weekly throughout the pre-breeding and breeding periods. Mated (sperm-positive or plug-positive) females received clinical examinations on GD 0, 7, 14 and 21. Clinical observations were not conducted on females that failed to mate or deliver a litter, unless deemed appropriate based on cageside observations. Clinical observations included a careful, hand-held examination of the animal with an evaluation of abnormalities in the eyes, urine, feces, gastrointestinal tract, extremities, movement, posture, reproductive system, respiration, skin/hair-coat, and mucous membranes, as well as an assessment of general behavior, injuries or palpable mass/swellings.All rats were weighed during the pre-exposure period and weekly during the 10-week pre-breeding periods. Males were weighed weekly after breeding until termination. Mated females were weighed on GD 0, 7, 14, 17, and 21. Lactating females were weighed on LD 1, 4, 7, 14, and 21. Females that failed to mate and/or deliver a litter were weighed weekly during the subsequent gestation and/or lactation segments of the study. F1 offspring assigned to the P2 generation that begin oral gavage dosing on PND 22 were weighed approximately every three days until they reached six weeks of age. The additional body weights collected were used for dose calculations to accommodate for rapid growth during this time.Feed consumption was determined weekly during the 10-week pre-breeding period for all animals by weighing feed containers at the start and end of a measurement cycle. During breeding, feed consumption was not measured due to co-housing. Following breeding, feed consumption for males continued to be measured weekly until termination. For mated females, feed consumption was measured on GD 0, 7, 14, and 21. For females delivering litters, feed consumption was measured on LD 1, 4, 7, 11, 14, 17, 19, and 21. Feed consumption was not measured for females that failed to mate or failed to deliver a litter.
- Oestrous cyclicity (parental animals):
- Vaginal lavage samples from all P1 and P2 females were collected daily for three weeks prior to mating and during cohabitation until each female was sperm- or plug-positive or until the two week mating period had elapsed. Lavage samples were collected by gently irrigating the vagina with water and transferring lavage fluid to a microscope slide. Vaginal lavage slides collected during the three weeks prior to mating were examined microscopically to determine estrous cycle length and pattern. On the day of scheduled necropsy, vaginal lavage samples were collected from all P1 and P2 female rats for subsequent determination of the stage of the estrous cycle.
- Sperm parameters (parental animals):
- Sperm parameters were evaluated in all P1 and P2 males at termination. Unless circumstances dictated otherwise, the left and right epididymides and testes were allocated as follows: right epididymis - motility and histopathology; left epididymis - counts; right testis - histopathology; left testis - counts.MotilityImmediately after euthanasia of males and isolation of their epididymides, a small sample of sperm from the right cauda epididymis was expressed into a dish containing SpermPrep Medium (ZDL, Lexington, Kentucky) and was incubated at room temperature for approximately 2-3 minutes. An aliquot of the incubated sperm suspension was placed in a chamber of the HTM Integrated Visual Optical System (IVOS; Hamilton-Thorne Research, Beverly, Massachusetts) for the determination of total percent motile (showing any motion) and percent progressively motile (showing net forward motion) sperm. Images from the motility analyses were recorded on CD-R and were archived with the study file. After sperm were released, the epididymis was placed in Bouin's fixative and subjected to histologic examination.CountsThe left testis and cauda epididymis were weighed and then frozen at approximately -20 C for subsequent determination of the number of homogenization-resistant spermatids and sperm per testis/cauda epididymis and per gram of testicular/epididymal tissue. The thawed testis or epididymis were minced, diluted and stained with a fluorescent DNA-binding dye (HTM-IDENT, Hamilton-Thorne Research, Beverly, Massachusetts) and the spermatid or sperm count determined from an aliquot loaded into the IVOS analyzer as described by Stradler et al. (1996). Initially, samples from the high-dose and control animals were evaluated. If treatment-related effects were seen, the middle and low-dose groups will also be evaluated as necessary to establish a NOEL.MorphologyAn aliquot of sperm suspension was placed on a slide, and a smear prepared and air-dried for subsequent evaluation of sperm morphology. At least 200 sperm per male were evaluated and classified as normal or abnormal as described by Filler (1993). Morphological evaluation of sperm from control and high-dose males was conducted. If treatment-related effects were observed, evaluation of sperm from the lower dose levels was performed. Sperm morphology was scored blind with respect to treatment group.
- Litter observations:
- Females were observed periodically for signs of parturition beginning on or about GD 20. In so far as possible, parturition was observed for signs of difficulty or unusual duration. The day of parturition was recorded as the first day that one or more delivered fetuses are noted, and was designated as LD 0. The following information was recorded for each litter: the date of parturition, the number of live and dead pups on LD 0, 1, 4, 7, 14, and 21, and the sex and body weight of each pup on LD 1, 4 (before and after culling), 7, 14, and 21. Any pup found dead or sacrificed in moribund condition was sexed and examined grossly, to the extent possible, for external and visceral defects. Cage-side examinations were be conducted on litters, at least twice daily.To minimize variation in pup growth due to differences in litter size, all litters were standardized to eight pups per litter on PND 4. This was accomplished by randomly ordering the pups in each litter by sex. Pups to be culled were randomly selected using a computer generated randomization procedure, so that four males and four females remained in each litter. If it was not possible to have four pups/sex in each litter, unequal numbers of males and females were retained (e.g., five males, three females). Litters with fewer than eight pups were not culled. Preferential culling of runts was not performed. Culled pups were euthanized and then discarded. All litters were weaned on PND 21. All F1 weanlings selected for mating, were observed daily for vaginal opening beginning on PND 28 (Cooper et al., 1989) or preputial separation beginning on day 35 (Korenbrot et al., 1977). The age and body weight at the time of landmark acquisition were recorded. Examination for puberty onset ceased upon acquisition, or on PND 43 (females) or 62 (males), whichever came first.
- Postmortem examinations (parental animals):
- A complete necropsy was conducted on all adult animals. The necropsy included an examination of the external tissues and all orifices. Weights of the ovaries, uterus (with oviducts and cervix), testes, epididymides, seminal vesicles with coagulating glands (and fluids), prostate, brain, pituitary (weighed after fixation), liver, kidneys, adrenal glands, spleen, thyroid with parathyroids (weighed after fixation) and known target organs will be recorded, and the organ-to-body weight ratios calculated. In addition, weights of the left testis and left cauda epididymis were collected for use in calculating sperm count parameters. Histologic examination of the tissues (Table A6.8.2/01-1) was conducted on all control and high-dose adult rats. Examination of tissues from the remaining groups was limited to those tissues that demonstrated treatment-related histologic effects at the high dose, and relevant gross lesions and reproductive organs of animals with signs of reduced fertility. Histopathological examination of the testes included a qualitative assessment of stages of spermatogenesis. A cross section through the approximate center of both testes of control and high-dose males was embedded in paraffin, sectioned at 5 µm and stained. The presence and integrity of the stages of spermatogenesis was qualitatively evaluated following the criteria and guidance of Russell et al. (1990). Microscopic evaluation included a qualitative assessment of the relationships between spermatogonia, spermatocytes, spermatids, and spermatozoa seen in cross sections of the seminiferous tubules. The progression of these cellular associations defines the cycle of spermatogenesis. In addition, sections of both testes were examined for the presence of degenerative changes (e.g., vacuolation of the germinal epithelium, a preponderance of Sertoli cells, sperm stasis, inflammatory changes, mineralization, and fibrosis).Examination of the ovaries included enumeration of primordial follicles using a method similar to Bucci et al. (1997). From among the surviving post-lactational P2 females in the control and high-dose groups, 15 per group were randomly selected for this examination.Selected histopathologic findings wiere graded to reflect the severity of specific lesions
- Postmortem examinations (offspring):
- Three pups/sex/litter from the F1 and F2 litters randomly selected at the time of weaning will be submitted on PND 22 for a complete necropsy. Gross pathological examination was performed as described above for adults, except that the weanlings were not fasted overnight. Representative sample of grossly abnormal tissues and any known target organs were collected from all weanlings at the scheduled necropsy. In addition, one of the three pups/sex/litter were randomly selected from those examined grossly for the collection of brain, spleen, uterus, and thymus weights. Organ-to-body weight ratios were calculated.
- Statistics:
- Parental body weights, gestation and lactation body weight gains, litter mean body weights, feed consumption, anogenital distance (absolute and relative to the cubed root of body weight), sperm count, follicle count, percent total and progressively motile sperm, mean estrous cycle length and organ weights (absolute and relative) will be evaluated by Bartlett's test (alpha = 0.01; Winer, 1971) for equality of variances. Based upon the outcome of Bartlett's test, either a parametric (Steel and Torrie, 1960) or nonparametric (Hollander and Wolfe, 1973) analysis of variance (ANOVA) will be performed. If the ANOVA is significant at alpha = 0.05, a Dunnett's test (alpha = 0.05; Winer, 1971) or the Wilcoxon Rank-Sum (alpha = 0.05; Hollander and Wolfe, 1973) test with Bonferroni's correction (Miller, 1966) will be performed. Feed consumption values will be excluded from analysis if the feed is spilled or scratched.Gestation length, age at vaginal opening (females), age at preputial separation (males), average time to mating, and litter size will be analyzed using a nonparametric ANOVA. If the ANOVA is significant, the Wilcoxon Rank-Sum test with Bonferroni's correction will be performed. Sperm morphology will be arcsine transformed and analyzed using a parametric ANOVA. Slides containing less than 200 sperm will be excluded from analysis. If the ANOVA is significant, the Dunnett's test will be performed. Statistical outliers (alpha = 0.02) will be identified by the sequential method of Grubbs (1969) and will only be excluded from analysis for documented, scientifically sound reasons. The mating, conception, fertility and gestation indices will be analyzed by the Fisher exact probability test
- Reproductive indices:
- Reproductive indices were calculated for all dose level groups as follows:Female mating index = (No. females with evidence of mating/No. paired) x 100Male mating index = (No. males with evidence of mating/No. paired) x 100Female conception index = (No. females with evidence of pregnancy/No. mated) x 100Male conception index = (No. males siring a litter/No. mated) x 100Female fertility index = (No. females with evidence of pregnancy/No. paired) x 100Male fertility index = (No. males siring a litter/No. paired) x 100Gestation index = (No. females delivering a viable litter/No. females with evidence of pregnancy) x 100Gestation survival index = percentage of delivered pups alive at birthPost-implantation loss = (No. implants – No. viable offspring)/(No. implants) x 100
- Offspring viability indices:
- The following information was recorded for each litter: the date of parturition, the number of live and dead pups on LD 0, 1, 4, 7, 14, and 21, and the sex and body weight of each pup on LD 1, 4 (before and after culling), 7, 14, and 21.Day 1 or 4 pup survival index = (No. viable pups on day 1 or 4/No. born live) x 100Day 7, 14, or 21 pup survival index = (No. viable pups on day 7, 14 or 21/No. live after culling) x 100
Results and discussion
Results: P0 (first parental generation)
General toxicity (P0)
- Clinical signs:
- effects observed, treatment-related
- Description (incidence and severity):
- Gastric irritation due to release of formaldehyde
- Mortality:
- mortality observed, non-treatment-related
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- not examined
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- no effects observed
- Immunological findings:
- not examined
- Organ weight findings including organ / body weight ratios:
- effects observed, treatment-related
- Histopathological findings: non-neoplastic:
- effects observed, treatment-related
Reproductive function / performance (P0)
- Reproductive function: oestrous cycle:
- effects observed, treatment-related
- Reproductive function: sperm measures:
- no effects observed
- Reproductive performance:
- no effects observed
Details on results (P0)
Effect levels (P0)
open allclose all
- Key result
- Dose descriptor:
- NOEL
- Remarks:
- Systemic Toxicity
- Effect level:
- 20 mg/kg bw/day (actual dose received)
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- histopathology: non-neoplastic
- Key result
- Dose descriptor:
- NOEL
- Remarks:
- Reproductive Toxicity
- Effect level:
- 60 mg/kg bw/day (actual dose received)
- Sex:
- male/female
- Basis for effect level:
- other: Due to slighlty increased post-implantation loss at 200 mg/kg/day
Results: P1 (second parental generation)
General toxicity (P1)
- Clinical signs:
- no effects observed
- Mortality:
- mortality observed, non-treatment-related
- Body weight and weight changes:
- effects observed, non-treatment-related
- Food consumption and compound intake (if feeding study):
- effects observed, non-treatment-related
- Food efficiency:
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- not examined
- Clinical biochemistry findings:
- not examined
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- no effects observed
- Immunological findings:
- not examined
- Organ weight findings including organ / body weight ratios:
- effects observed, treatment-related
- Description (incidence and severity):
- Liver weight increases in males at treatment levels 60 and 200 mg/kg/day
- Gross pathological findings:
- effects observed, non-treatment-related
- Neuropathological findings:
- not examined
- Histopathological findings: non-neoplastic:
- effects observed, treatment-related
- Description (incidence and severity):
- Vacuolization and altered tinctorial properties of the heptaocytes in males at 60 and 200 mg/kg/day. Similar results were seen in P1 females at the highest dose level. Effects similar to those seen in stomachs of P0 males and females were seen at the highest dose level
- Histopathological findings: neoplastic:
- no effects observed
Reproductive function / performance (P1)
- Reproductive function: oestrous cycle:
- no effects observed
- Reproductive function: sperm measures:
- no effects observed
- Reproductive performance:
- not examined
Effect levels (P1)
open allclose all
- Key result
- Dose descriptor:
- NOEL
- Remarks:
- Systemis toxicity
- Effect level:
- 20 mg/kg bw/day
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- histopathology: non-neoplastic
- Remarks on result:
- other:
- Remarks:
- Vacuolization and altered tinctorial of hepatocytes
- Key result
- Dose descriptor:
- NOEL
- Remarks:
- Reproductive toxicity
- Effect level:
- 60 mg/kg bw/day
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- other: Due to slightly increased post-implantation losses at 200 mg/kg bw/day
Results: F1 generation
General toxicity (F1)
- Clinical signs:
- no effects observed
- Mortality / viability:
- no mortality observed
- Body weight and weight changes:
- no effects observed
Details on results (F1)
Effect levels (F1)
- Key result
- Dose descriptor:
- NOEL
- Remarks:
- Developmental toxicity
- Generation:
- F1
- Effect level:
- 200 mg/kg bw/day
- Sex:
- male/female
- Basis for effect level:
- viability
- sexual maturation
- clinical signs
- mortality
- body weight and weight gain
- organ weights and organ / body weight ratios
- gross pathology
- histopathology: non-neoplastic
Results: F2 generation
Details on results (F2)
Effect levels (F2)
- Key result
- Dose descriptor:
- NOEL
- Remarks:
- Developmental toxicity
- Generation:
- F2
- Effect level:
- 200 mg/kg bw/day
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- viability
- sexual maturation
- clinical signs
- mortality
- body weight and weight gain
- organ weights and organ / body weight ratios
- gross pathology
- histopathology: non-neoplastic
Overall reproductive toxicity
- Key result
- Reproductive effects observed:
- yes
- Lowest effective dose / conc.:
- 200 mg/kg bw/day
- Treatment related:
- yes
- Relation to other toxic effects:
- not specified
- Dose response relationship:
- not specified
Applicant's summary and conclusion
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.