Registration Dossier

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

The test material was considered to be non-mutagenic under the conditions of the Ames test (OECD 471, EU Method B.13/14, US EPA OCSPP 870.5100 and relevant Japanese guidelines).

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

The key study was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF, the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Regulation (EC) number 440/2008 of 30 May 2008 and the USA, EPA OCSPP harmonized guideline - Bacterial Reverse Mutation Test.

Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA were treated with the test item using the Ames plate incorporation method at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10 % liver S9 in standard co-factors). The dose range for Experiment 1 was predetermined and was 1.5 to 5000 μg/plate. The experiment was repeated on a separate day using fresh cultures of the bacterial strains and fresh test item formulations. The dose range was amended following the results of Experiment 1 and was 15 to 5000 μg/plate. Six test item dose levels were selected in Experiment 2 in order to achieve both a minimum of four non-toxic dose levels and the potential toxic limit of the test item.

The vehicle (tetrahydrofuran) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated. The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test and consequently the same maximum dose level was used in the second mutation test. Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second mutation test. A test item precipitate (globular in appearance) was noted under a low power microscope at 500 μg/plate and by eye from 1500 μg/plate, this observation did not prevent the scoring of revertant colonies. There were no significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1. Similarly, no significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2. The test item was considered to be non-mutagenic under the conditions of the test.

Justification for classification or non-classification

The test material was considered to be non-mutagenic under the conditions of the Ames test and classification under the terms of Regulation (EC) No 1272/2008 is not required.

Categories Display