Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-487-5 | CAS number: 10196-49-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
A valid Ames test according OECD TG 471 with Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrAis available.The test was negative with and without metabolic activation.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- Experimental start date: 31 May 2017, Experimental completion date: 08 August 2017.
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- Identification: 2,2,4-Trimethyl-1-oxa-4-aza-2-silacyclohexane
CAS No: 10196-49-3
CAS name: 1-Oxa-4-aza-2-silacyclohexane, 2,2,4-trimethyl-
EC name: 2,2,4-trimethyl-1-oxa-4-aza-2-silacyclohexane
EC number: 233-487-5
Empirical Formula: C6H15NOSi
Molecular Mass: 145.3 g/mol
Physical state/Appearance: Clear colourless liquid
Expiry Date: 09 December 2030
Storage Conditions: Room temperature in the dark - Target gene:
- Histidine locus
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Species / strain / cell type:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Metabolic activation system:
- Phenobarbital/β-naphthaflavone induced rat liver was used at the metabolic activation system
- Test concentrations with justification for top dose:
- Experiment 1: 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate. The maximum concentration was 5000 µg/plate as this is the maximum recommended dose level.
Experiment 2: 15, 50, 150, 500, 1500, 5000 µg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test - Vehicle / solvent:
- The test item was fully miscible in sterile distilled water and dimethyl sulphoxide at 50 mg/mL in solubility checks performed in–house. Sterile distilled water was selected as the vehicle for the study. The test item was found to be stable at 4 and 24 hours when stored at room temperature in the light, the formulations were also found to be homogeneously prepared.
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 2 µg/plate for WP2uvrA, 3 µg/plate for TA100, 5 µg/plate for TA1535
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- without metabolic activation
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 80 µg/plate for TA1537
- Positive control substance:
- 9-aminoacridine
- Remarks:
- without metabolic activation
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 0.2 µg/plate for TA98
- Positive control substance:
- 4-nitroquinoline-N-oxide
- Remarks:
- without metabolic activation
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 1 µg/plate for TA100, 2 µg/plate for TA1535 and TA1537, 10 µg/plate for WP2uvrA
- Positive control substance:
- other: 2-Aminoanthracene
- Remarks:
- with metabolic activation
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 5 µg/plate for TA98
- Positive control substance:
- benzo(a)pyrene
- Remarks:
- with metabolic activation
- Details on test system and experimental conditions:
- Test Item Preparation and Analysis
The test item was accurately weighed and, on the day of each experiment, approximate half-log dilutions prepared in sterile distilled water by mixing on a vortex mixer and sonication for 5 minutes at 40 °C Formulated concentrations were adjusted to allow for the stated impurity content (1.4%) of the test item. All formulations were used within four hours of preparation. Analysis for concentration of the test item formulations is not a requirement of the test guidelines and was, therefore, not determined. This is an exception with regard to GLP and has been reflected in the GLP compliance statement.
Test for Mutagenicity: Experiment 1 - Plate Incorporation Method
Dose selection
The test item was tested using the following method. The maximum concentration was 5000 µg/plate (the maximum recommended dose level). Eight concentrations of the test item (1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
Without Metabolic Activation
0.1 mL of the appropriate concentration of test item, solvent vehicle or appropriate positive control was added to 2 mL of molten, trace amino-acid supplemented media containing 0.1 mL of one of the bacterial strain cultures and 0.5 mL of phosphate buffer. These were then mixed and overlayed onto a Vogel Bonner agar plate. Negative (untreated) controls were also performed on the same day as the mutation test. Each concentration of the test item, appropriate positive, vehicle and negative controls, and each bacterial strain, was assayed using triplicate plates.
With Metabolic Activation
The procedure was the same as described previously except that following the addition of the test item formulation and bacterial culture, 0.5 mL of S9 mix was added to the molten, trace amino-acid supplemented media instead of phosphate buffer.
Incubation and Scoring
All of the plates were incubated at 37 ± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity).
Test for Mutagenicity: Experiment 2 – Pre-Incubation Method
As the result of Experiment 1 was deemed negative, Experiment 2 was performed using the pre-incubation method in the presence and absence of metabolic activation.
Dose selection
The dose range used for Experiment 2 was determined by the results of Experiment 1 and was 15, 50, 150, 500, 1500, 5000 µg/plate.
Six test item dose levels per bacterial strain were selected in the second mutation test in order to achieve both a minimum of four non-toxic dose levels and the potential toxic limit of the test item following the change in test methodology from plate incorporation to
pre-incubation.
Without Metabolic Activation
0.1 mL of the appropriate bacterial strain culture, 0.5 mL of phosphate buffer and 0.1 mL of the test item formulation or solvent vehicle or 0.1 mL of appropriate positive control were incubated at 37 ± 3 °C for 20 minutes (with shaking) prior to addition of 2 mL of molten, trace amino-acid supplemented media and subsequent plating onto Vogel Bonner plates. Negative (untreated) controls were also performed on the same day as the mutation test employing the plate incorporation method. All testing for this experiment was performed in triplicate.
With Metabolic Activation
The procedure was the same as described previously except that following the addition of the test item formulation and bacterial strain culture, 0.5 mL of S9 mix was added to the tube instead of phosphate buffer, prior to incubation at 37 ± 3 °C for 20 minutes (with shaking) and addition of molten, trace amino-acid supplemented media. All testing for this experiment was performed in triplicate.
Incubation and Scoring
All of the plates were incubated at 37 ± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity). Due to a hardware failure, Ames study manager and sorcerer system suffered an extended downtime, resulting in manual counts being performed on all of the plates produced for Experiment 2. - Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out of historical range response (Cariello and Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit making a definite judgment about test item activity. Results of this type will be reported as equivocal. - Statistics:
- Statistical significance was confirmed by using Dunnetts Regression Analysis (* = p < 0.05) for those values that indicate statistically significant increases in the frequency of revertant colonies compared to the concurrent solvent control.
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory). The amino acid supplemented top agar and the S9-mix used in both experiments was shown to be sterile. The test item formulation was also shown to be sterile.
Results for the negative controls (spontaneous mutation rates) were considered to be acceptable. These data are for concurrent untreated control plates performed on the same day as the Mutation Test.
The vehicle (sterile distilled water) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation fell within prescribed historical control ranges. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 µg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test. Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second mutation test (pre-incubation method).
No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.
There were no biologically relevant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1 (plate incorporation method). Similarly, no increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2 (pre incubation method). Small, statistically significant increases in revertant colony frequency were observed in Experiment 1 at 5000 µg/plate (TA1535 dosed in the absence of S9) and 150 µg/plate (TA1537 dosed in the presence of S9-mix). These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose levels were within the in-house historical untreated/vehicle control range for each tester strain and the mean maximum fold increase was only 1.9 times the concurrent vehicle controls. - Conclusions:
- 2,2,4-Trimethyl-1-oxa-4-aza-2-silacyclohexane (CAS no. 10196-49-3) was considered to be non-mutagenic under the conditions of this test.
- Executive summary:
Introduction
The test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test".
Methods
Salmonella typhimuriumstrains TA1535, TA1537, TA98 and TA100 andEscherichia colistrain WP2uvrAwere treated with2,2,4-Trimethyl-1-oxa-4-aza-2-silacyclohexaneusing both the Ames plate incorporation and pre-incubation methods at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). The dose range for Experiment 1 (plate incorporation method) was predetermined and was 1.5 to 5000 mg/plate. The experiment was repeated on a separate day (Experiment 2, pre-incubation method) using fresh cultures of the bacterial strains and fresh test item formulations. The dose range for Experiment 2 was amended, following the results of Experiment 1, and was 15 to 5000 µg/plate. Six test item concentrations were selected in Experiment 2 in order to achieve both four non‑toxic dose levels and the potential toxic limit of the test item following the change in test methodology.
Results
The vehicle (sterile distilled water) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 µg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test. Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second mutation test (pre-incubation method).
No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.
There were no biologically relevant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1 (plate incorporation method). Similarly, no increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2 (pre‑incubation method). Small, statistically significant increases in revertant colony frequency were observed in Experiment 1 at 5000 µg/plate (TA1535 dosed in the absence of S9) and 150 µg/plate (TA1537 dosed in the presence of S9-mix). These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose levels were within the in-house historical untreated/vehicle control range for each tester strain and the mean maximum fold increase was only 1.9 times the concurrent vehicle controls.
Conclusion
2,2,4-Trimethyl-1-oxa-4-aza-2-silacyclohexanewas considered to be non-mutagenic under the conditions of this test.
Reference
Spontaneous Mutation Rates (Concurrent Negative Controls)
Experiment 1
Number of revertants (mean number of colonies per plate) |
|||||||||
Base-pair substitution type |
Frameshift type |
||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
|||||
104 |
|
17 |
|
25 |
|
16 |
|
15 |
|
84 |
(87) |
22 |
(17) |
11 |
(24) |
16 |
(16) |
11 |
(12) |
72 |
|
12 |
|
36 |
|
15 |
|
9 |
|
Experiment 2
Number of revertants (mean number of colonies per plate) |
|||||||||
Base-pair substitution type |
Frameshift type |
||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
|||||
63 |
|
14 |
|
18 |
|
20 |
|
12 |
|
65 |
(67) |
14 |
(14) |
25 |
(19) |
19 |
(17) |
6 |
(9) |
72 |
|
13 |
|
13 |
|
13 |
|
9 |
|
Test Results: Experiment 1 – Without Metabolic Activation
Test Period |
From: 10 July 2017 |
To: 13 July 2017 |
||||||||||
S9-Mix (-) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||||||||
Base-pair substitution strains |
Frameshift strains |
|||||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||||||||
Solvent Control (Water) |
71 77 82 |
(77) 5.5# |
12 9 10 |
(10) 1.5 |
21 27 23 |
(24) 3.1 |
13 27 20 |
(20) 7.0 |
18 18 22 |
(19) 2.3 |
||
1.5 µg |
93 74 87 |
(85) 9.7 |
10 10 13 |
(11) 1.7 |
20 23 20 |
(21) 1.7 |
16 13 19 |
(16) 3.0 |
12 10 8 |
(10) 2.0 |
||
5 µg |
82 79 95 |
(85) 8.5 |
12 13 18 |
(14) 3.2 |
23 20 17 |
(20) 3.0 |
16 33 13 |
(21) 10.8 |
24 15 14 |
(18) 5.5 |
||
15 µg |
90 91 79 |
(87) 6.7 |
15 15 14 |
(15) 0.6 |
24 19 17 |
(20) 3.6 |
20 15 17 |
(17) 2.5 |
14 23 13 |
(17) 5.5 |
||
50 µg |
85 81 81 |
(82) 2.3 |
17 10 8 |
(12) 4.7 |
17 18 28 |
(21) 6.1 |
13 19 25 |
(19) 6.0 |
14 13 30 |
(19) 9.5 |
||
150 µg |
83 85 83 |
(84) 1.2 |
18 14 20 |
(17) 3.1 |
23 26 20 |
(23) 3.0 |
25 21 24 |
(23) 2.1 |
9 21 16 |
(15) 6.0 |
||
500 µg |
92 98 90 |
(93) 4.2 |
24 19 7 |
(17) 8.7 |
25 22 30 |
(26) 4.0 |
25 25 23 |
(24) 1.2 |
15 6 10 |
(10) 4.5 |
||
1500 µg |
90 74 109 |
(91) 17.5 |
18 20 12 |
(17) 4.2 |
17 20 19 |
(19) 1.5 |
17 21 21 |
(20) 2.3 |
10 17 20 |
(16) 5.1 |
||
5000 µg |
77 88 80 |
(82) 5.7 |
22 24 14 |
* (20) 5.3 |
19 35 31 |
(28) 8.3 |
19 27 28 |
(25) 4.9 |
16 20 15 |
(17) 2.6 |
||
Positive controls S9-Mix (-) |
Name Dose Level No. of Revertants |
ENNG |
ENNG |
ENNG |
4NQO |
9AA |
||||||
3 µg |
5 µg |
2 µg |
0.2 µg |
80 µg |
||||||||
300 481 425 |
(402) 92.7 |
77 72 100 |
(83) 14.9 |
402 299 279 |
(327) 66.0 |
249 284 288 |
(274) 21.5 |
103 77 148 |
(109) 35.9 |
|||
ENNG N-ethyl-N'-nitro-N-nitrosoguanidine
4NQO 4-Nitroquinoline-1-oxide
9AA 9-Aminoacridine
* p ≤ 0.05
# Standard deviation
Test Results: Experiment 1 – With Metabolic Activation
Test Period |
From: 10 July 2017 |
To: 13 July 2017 |
||||||||||
S9-Mix (+) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||||||||
Base-pair substitution strains |
Frameshift strains |
|||||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||||||||
Solvent Control (Water) |
72 81 85 |
(79) 6.7# |
9 13 19 |
(14) 5.0 |
23 33 40 |
(32) 8.5 |
26 25 25 |
(25) 0.6 |
8 14 8 |
(10) 3.5 |
||
1.5 µg |
102 86 80 |
(89) 11.4 |
10 10 11 |
(10) 0.6 |
22 30 29 |
(27) 4.4 |
25 11 20 |
(19) 7.1 |
13 12 9 |
(11) 2.1 |
||
5 µg |
71 83 85 |
(80) 7.6 |
9 21 9 |
(13) 6.9 |
24 22 20 |
(22) 2.0 |
23 14 27 |
(21) 6.7 |
18 14 11 |
(14) 3.5 |
||
15 µg |
74 88 94 |
(85) 10.3 |
15 21 12 |
(16) 4.6 |
25 23 20 |
(23) 2.5 |
12 13 19 |
(15) 3.8 |
12 11 10 |
(11) 1.0 |
||
50 µg |
88 91 84 |
(88) 3.5 |
16 9 11 |
(12) 3.6 |
26 16 43 |
(28) 13.7 |
18 16 22 |
(19) 3.1 |
13 16 11 |
(13) 2.5 |
||
150 µg |
82 83 84 |
(83) 1.0 |
15 8 11 |
(11) 3.5 |
36 32 25 |
(31) 5.6 |
14 18 23 |
(18) 4.5 |
16 16 21 |
* (18) 2.9 |
||
500 µg |
71 90 107 |
(89) 18.0 |
9 17 9 |
(12) 4.6 |
25 28 32 |
(28) 3.5 |
19 21 14 |
(18) 3.6 |
11 13 7 |
(10) 3.1 |
||
1500 µg |
84 87 83 |
(85) 2.1 |
9 9 10 |
(9) 0.6 |
33 29 32 |
(31) 2.1 |
22 21 19 |
(21) 1.5 |
20 15 10 |
(15) 5.0 |
||
5000 µg |
86 92 113 |
(97) 14.2 |
10 7 9 |
(9) 1.5 |
22 26 28 |
(25) 3.1 |
20 12 17 |
(16) 4.0 |
13 15 15 |
(14) 1.2 |
||
Positive controls S9-Mix (+) |
Name Dose Level No. of Revertants |
2AA |
2AA |
2AA |
BP |
2AA |
||||||
1 µg |
2 µg |
10 µg |
5 µg |
2 µg |
||||||||
732 1479 1516 |
(1242) 442.3 |
214 229 227 |
(223) 8.1 |
235 208 217 |
(220) 13.7 |
185 209 204 |
(199) 12.7 |
248 279 319 |
(282) 35.6 |
|||
BP Benzo(a)pyrene
2AA 2-Aminoanthracene
* p ≤ 0.05
# Standard deviation
Test Results: Experiment 2 – Without Metabolic Activation
Test Period |
From: 01 August 2017 |
To: 04 August 2017 |
||||||||||
S9-Mix (-) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||||||||
Base-pair substitution strains |
Frameshift strains |
|||||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||||||||
Solvent Control (Water) |
78 68 68 |
(71) 5.8# |
12 16 13 |
(14) 2.1 |
24 21 18 |
(21) 3.0 |
24 22 27 |
(24) 2.5 |
9 8 16 |
(11) 4.4 |
||
15 µg |
69 65 65 |
(66) 2.3 |
10 9 14 |
(11) 2.6 |
20 25 12 |
(19) 6.6 |
18 22 22 |
(21) 2.3 |
11 9 9 |
(10) 1.2 |
||
50 µg |
65 67 69 |
(67) 2.0 |
18 16 14 |
(16) 2.0 |
14 14 18 |
(15) 2.3 |
24 27 16 |
(22) 5.7 |
9 9 10 |
(9) 0.6 |
||
150 µg |
81 79 61 |
(74) 11.0 |
16 21 12 |
(16) 4.5 |
24 15 25 |
(21) 5.5 |
17 22 14 |
(18) 4.0 |
12 11 9 |
(11) 1.5 |
||
500 µg |
67 69 64 |
(67) 2.5 |
11 11 13 |
(12) 1.2 |
24 12 24 |
(20) 6.9 |
16 18 21 |
(18) 2.5 |
9 14 13 |
(12) 2.6 |
||
1500 µg |
80 65 66 |
(70) 8.4 |
12 10 17 |
(13) 3.6 |
20 15 18 |
(18) 2.5 |
11 16 15 |
(14) 2.6 |
3 16 14 |
(11) 7.0 |
||
5000 µg |
81 70 69 |
(73) 6.7 |
18 7 14 |
(13) 5.6 |
16 19 14 |
(16) 2.5 |
21 17 21 |
(20) 2.3 |
19 9 7 |
(12) 6.4 |
||
Positive controls S9-Mix (-) |
Name Dose Level No. of Revertants |
ENNG |
ENNG |
ENNG |
4NQO |
9AA |
||||||
3 µg |
5 µg |
2 µg |
0.2 µg |
80 µg |
||||||||
799 833 798 |
(810) 19.9 |
1457 1692 1480 |
(1543) 129.5 |
553 527 459 |
(513) 48.5 |
295 306 302 |
(301) 5.6 |
359 246 317 |
(307) 57.1 |
|||
ENNG N-ethyl-N'-nitro-N-nitrosoguanidine
4NQO 4-Nitroquinoline-1-oxide
9AA 9-Aminoacridine
# Standard deviation
Test Results: Experiment 2 – With Metabolic Activation
Test Period |
From: 01 August 2017 |
To: 04 August 2017 |
||||||||||
S9-Mix (+) |
Dose Level Per Plate |
Number of revertants (mean) +/- SD |
||||||||||
Base-pair substitution strains |
Frameshift strains |
|||||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||||||||
Solvent Control (Water) |
86 68 62 |
(72) 12.5# |
15 21 19 |
(18) 3.1 |
21 24 19 |
(21) 2.5 |
28 29 18 |
(25) 6.1 |
15 8 6 |
(10) 4.7 |
||
15 µg |
68 67 65 |
(67) 1.5 |
20 21 16 |
(19) 2.6 |
27 19 27 |
(24) 4.6 |
25 17 21 |
(21) 4.0 |
9 12 15 |
(12) 3.0 |
||
50 µg |
66 72 64 |
(67) 4.2 |
17 12 16 |
(15) 2.6 |
19 16 24 |
(20) 4.0 |
31 13 16 |
(20) 9.6 |
11 11 7 |
(10) 2.3 |
||
150 µg |
65 65 64 |
(65) 0.6 |
18 19 13 |
(17) 3.2 |
19 20 18 |
(19) 1.0 |
24 19 17 |
(20) 3.6 |
8 9 10 |
(9) 1.0 |
||
500 µg |
69 60 65 |
(65) 4.5 |
18 19 11 |
(16) 4.4 |
18 13 20 |
(17) 3.6 |
21 21 27 |
(23) 3.5 |
15 9 11 |
(12) 3.1 |
||
1500 µg |
61 64 63 |
(63) 1.5 |
12 13 23 |
(16) 6.1 |
16 14 21 |
(17) 3.6 |
28 23 31 |
(27) 4.0 |
11 10 9 |
(10) 1.0 |
||
5000 µg |
73 72 64 |
(70) 4.9 |
23 18 21 |
(21) 2.5 |
26 25 24 |
(25) 1.0 |
22 30 24 |
(25) 4.2 |
9 11 16 |
(12) 3.6 |
||
Positive controls S9-Mix (+) |
Name Dose Level No. of Revertants |
2AA |
2AA |
2AA |
BP |
2AA |
||||||
1 µg |
2 µg |
10 µg |
5 µg |
2 µg |
||||||||
902 907 898 |
(902) 4.5 |
194 186 205 |
(195) 9.5 |
192 166 197 |
(185) 16.6 |
141 156 180 |
(159) 19.7 |
337 368 386 |
(364) 24.8 |
BP Benzo(a)pyrene
2AA 2-Aminoanthracene
# Standard deviation
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Justification for classification or non-classification
The Ames test (key-study) with S. typ. TA1535, TA1537, TA98, TA100 and E. coli WP2uvrA was negative.
According to Regulation EC No. 1272/2008, no classification and labelling for mutagenicity is required.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.