Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 946-365-8 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Study period:
- 2009
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Acceptable well-documented study reports which meet basic scientific principles.
- Justification for type of information:
- A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
Cross-reference
- Reason / purpose for cross-reference:
- read-across: supporting information
Reference
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- weight of evidence
- Study period:
- 2009
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Acceptable well-documented study reports which meet basic scientific principles.
- Justification for type of information:
- A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
- Reason / purpose for cross-reference:
- read-across source
- Strain:
- Abyssinian
- Metabolites identified:
- not specified
- Conclusions:
- Interpretation of results: low bioaccumulation potential based on study results
- Executive summary:
This data is being read across from the source study that tested 1-methylnaphthalene based on analogue read across.
The first step in the metabolism of methylnaphthalenes can occur either via ring epoxidation or via oxidation of the methyl side chain to generate an alcohol. Both processes are catalyzed by the cytochrome P450 monooxygenases. Investigators showed that the most catalytically active proteins involved in naphthalene metabolism (as assessed by Vmax/Km) were CYP1A2 and CYP2E1. CYP1A2 is localized primarily in the liver whereas CYP2E1 is found in a number of organs including respiratory tissue. More recent investigations have shown that CYP2A13 metabolizes naphthalene with relatively high turnover and low Km. Since this protein is expressed in human lung, albeit with a high degree of variability, it is a potential candidate for catalyzing the initial metabolism of naphthalene in human respiratory tissue.
Other data available come from work conducted with a single recombinant protein, CYP2F2. Although this protein appears to be abundant in airways of the mouse, available evidence suggests that the rat and Rhesus macaque orthologues are present in far smaller amounts in the lung. This protein metabolizes naphthalene, 2-methylnaphthalene and 1-nitronaphthalene, all with relatively low Km and high Vmax, and, based on inhibition studies with 5-phenyl-1-pentyne, appears to play a major role in the epoxidation of closely related substrates, i.e. styrene. These data suggest that this protein plays a quantitatively important role in the metabolic activation of these substrates at least in the mouse. The presence of large quantities of this protein in target cells may explain the species differences in susceptibility to naphthalene and 2-methylnaphthalene in mouse but not in rat.
Urinary Metabolites. The most prominent metabolites isolated in rat urine after treatment with low doses of 2-methylnaphthalene originated from initial oxidation of the parent hydrocarbon on the methyl moiety. Thirty to thirty-five percent of a dose of 14C-2-methylnaphthalene was recovered as a glycine conjugate of 2-naphthoic acid. Six to eight percent of the dose was represented by dihydrodiols and 3-5% of the dose was recovered as parent hydrocarbon. Other polar metabolites appeared to account for 35-45% of the radioactivity in the urine. Later work, showed that approximately 75% of the radioactive metabolites eliminated in the urine of guinea pigs administered a low dose of 3H-2-methylnaphthalene resulted from oxidation of the methyl group. These metabolites included free naphthoic acid, the glucuronide of naphthoic acid as well as the glycine conjugate. In these studies, a cysteine derivative, accounting for approximately 10% of the total urinary radioactivity, was reported in the urine. Finally, small percentages of sulfate and glucuronide conjugates of 8-hydroxy-2-methylnaphthalene (<10% of total urinary radioactivity) were measured.
More recent studies on the disposition and metabolism of 3H-1,2-dimethylnaphthalene (28 mg/kg) in rats showed that the radioactive parent compound was rapidly absorbed after ip administration, reaching peak levels within 4 h. Sixty-five percent of the administered radioactivity was recovered in the excreta within 24 h, with roughly equal amounts eliminated in the urine and feces. Greater than 95% of the administered radioactivity was recovered in the excreta within 72 h of administration. The highest tissue concentrations of radioactivity were observed in fat, but these fell rapidly to very low levels within 48 h. This compound apparently distributes rapidly to the fat but redistributes easily due to the rapid clearance of the compound. Urinary metabolites were identified in ether extracts of acidified (pH 1) urine. The parent compound (representing roughly 30% of the ether-extractable metabolites from urine), several dimethylthionaphthols, at least 2 dimethylmethylthionaphthalene derivatives as well as several derivatives generated from oxidation of the methyl groups to the alcohol and subsequently to the acid were measured in the urine following dimethylnaphthalene administration. The most prominent metabolites were the dimethylthionaphthol derivatives and the metabolites generated from side chain oxidation. It is noted that the 30% of the radioactivity unextracted by ether at pH 1may include a number of conjugated metabolites including glucuronides, sulfates and mercapturic acids. The results from more recent studies of the metabolism and distribution of radioactivity from 3H-1,4-dimethylnaphthalene and 1,6-dimethylnaphthalene are nearly identical to those with the 1,2-dimethylnaphthalene derivative. Again, radioactivity is rapidly absorbed reaching peak plasma concentrations within 4 h of administration. Metabolites which were derived from both oxidation of the methyl groups and the aromatic nucleus were isolated from the urine of treated rats.
These metabolites included methylnaphthoic acid as well as the intermediates leading to this derivative (methylhydroxymethyl, methylnaphthaldehyde). Trace quantities of a methylthio metabolite were observed; these metabolites have been measured in the urine of naphthalene-treated rodents as well.
Data source
Reference
- Reference Type:
- publication
- Title:
- Toxicity and metabolism of methylnaphthalenes: Comparison with naphthalene and 1-nitronaphthalene
- Author:
- Ching Yu Lin, Asa M. Wheelock, Dexter Morin, R. Michael Baldwin, Myong Gong Lee, Aysha Taff, Charles Plopper, Alan Buckpitt, Arlean Rohde
- Year:
- 2 009
- Bibliographic source:
- Toxicology 260 (2009) 16–27
Materials and methods
- Objective of study:
- metabolism
- Principles of method if other than guideline:
- This is a review article that compiles data from many studies.
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Methylnaphthalene
- EC Number:
- 215-329-7
- EC Name:
- Methylnaphthalene
- Cas Number:
- 1321-94-4
- Molecular formula:
- C11H10
- IUPAC Name:
- 1-methylnaphthalene
Constituent 1
Test animals
- Species:
- other: various
- Strain:
- not specified
- Sex:
- not specified
Administration / exposure
- Route of administration:
- other: various
- Vehicle:
- not specified
- Control animals:
- not specified
Results and discussion
Metabolite characterisation studies
- Metabolites identified:
- not specified
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results: low bioaccumulation potential based on study results
- Executive summary:
The first step in the metabolism of methylnaphthalenes can occur either via ring epoxidation or via oxidation of the methyl side chain to generate an alcohol. Both processes are catalyzed by the cytochrome P450 monooxygenases. Investigators showed that the most catalytically active proteins involved in naphthalene metabolism (as assessed by Vmax/Km) were CYP1A2 and CYP2E1. CYP1A2 is localized primarily in the liver whereas CYP2E1 is found in a number of organs including respiratory tissue. More recent investigations have shown that CYP2A13 metabolizes naphthalene with relatively high turnover and low Km. Since this protein is expressed in human lung, albeit with a high degree of variability, it is a potential candidate for catalyzing the initial metabolism of naphthalene in human respiratory tissue.
Other data available come from work conducted with a single recombinant protein, CYP2F2. Although this protein appears to be abundant in airways of the mouse, available evidence suggests that the rat and Rhesus macaque orthologues are present in far smaller amounts in the lung. This protein metabolizes naphthalene, 2-methylnaphthalene and 1-nitronaphthalene, all with relatively low Km and high Vmax, and, based on inhibition studies with 5-phenyl-1-pentyne, appears to play a major role in the epoxidation of closely related substrates, i.e. styrene. These data suggest that this protein plays a quantitatively important role in the metabolic activation of these substrates at least in the mouse. The presence of large quantities of this protein in target cells may explain the species differences in susceptibility to naphthalene and 2-methylnaphthalene in mouse but not in rat.
Urinary Metabolites. The most prominent metabolites isolated in rat urine after treatment with low doses of 2-methylnaphthalene originated from initial oxidation of the parent hydrocarbon on the methyl moiety. Thirty to thirty-five percent of a dose of 14C-2-methylnaphthalene was recovered as a glycine conjugate of 2-naphthoic acid. Six to eight percent of the dose was represented by dihydrodiols and 3-5% of the dose was recovered as parent hydrocarbon. Other polar metabolites appeared to account for 35-45% of the radioactivity in the urine. Later work, showed that approximately 75% of the radioactive metabolites eliminated in the urine of guinea pigs administered a low dose of 3H-2-methylnaphthalene resulted from oxidation of the methyl group. These metabolites included free naphthoic acid, the glucuronide of naphthoic acid as well as the glycine conjugate. In these studies, a cysteine derivative, accounting for approximately 10% of the total urinary radioactivity, was reported in the urine. Finally, small percentages of sulfate and glucuronide conjugates of 8-hydroxy-2-methylnaphthalene (<10% of total urinary radioactivity) were measured.
More recent studies on the disposition and metabolism of 3H-1,2-dimethylnaphthalene (28 mg/kg) in rats showed that the radioactive parent compound was rapidly absorbed after ip administration, reaching peak levels within 4 h. Sixty-five percent of the administered radioactivity was recovered in the excreta within 24 h, with roughly equal amounts eliminated in the urine and feces. Greater than 95% of the administered radioactivity was recovered in the excreta within 72 h of administration. The highest tissue concentrations of radioactivity were observed in fat, but these fell rapidly to very low levels within 48 h. This compound apparently distributes rapidly to the fat but redistributes easily due to the rapid clearance of the compound. Urinary metabolites were identified in ether extracts of acidified (pH 1) urine. The parent compound (representing roughly 30% of the ether-extractable metabolites from urine), several dimethylthionaphthols, at least 2 dimethylmethylthionaphthalene derivatives as well as several derivatives generated from oxidation of the methyl groups to the alcohol and subsequently to the acid were measured in the urine following dimethylnaphthalene administration. The most prominent metabolites were the dimethylthionaphthol derivatives and the metabolites generated from side chain oxidation. It is noted that the 30% of the radioactivity unextracted by ether at pH 1may include a number of conjugated metabolites including glucuronides, sulfates and mercapturic acids. The results from more recent studies of the metabolism and distribution of radioactivity from 3H-1,4-dimethylnaphthalene and 1,6-dimethylnaphthalene are nearly identical to those with the 1,2-dimethylnaphthalene derivative. Again, radioactivity is rapidly absorbed reaching peak plasma concentrations within 4 h of administration. Metabolites which were derived from both oxidation of the methyl groups and the aromatic nucleus were isolated from the urine of treated rats.
These metabolites included methylnaphthoic acid as well as the intermediates leading to this derivative (methylhydroxymethyl, methylnaphthaldehyde). Trace quantities of a methylthio metabolite were observed; these metabolites have been measured in the urine of naphthalene-treated rodents as well.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.