Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 265-100-0 | CAS number: 64741-99-7 A complex combination of hydrocarbons obtained as the extract from a solvent extraction process. It consists predominantly of aromatic hydrocarbons having carbon numbers predominantly in the range of C6 through C8 and boiling in the range of approximately 80°C to 145°C (176°F to 293°F). This stream is likely to contain 10 vol. % or more benzene.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Carcinogenicity
Administrative data
Description of key information
Long term experimental carcinogenicity bioassays have shown that benzene is a carcinogen producing a variety of tumours in animals (including lymphomas and leukaemia). Human epidemiological studies indicate a causal relationship between benzene exposure and acute non-lymphatic leukaemia.
Key value for chemical safety assessment
Carcinogenicity: via oral route
Endpoint conclusion
- Endpoint conclusion:
- adverse effect observed
- Dose descriptor:
- LOAEL
- 25 mg/kg bw/day
- Study duration:
- chronic
- Species:
- mouse
- Quality of whole database:
- Adequate information is available to characterise the oral carcinogenicity of benzene in animals.
Carcinogenicity: via inhalation route
Endpoint conclusion
- Endpoint conclusion:
- adverse effect observed
- Dose descriptor:
- LOAEC
- 960 mg/m³
- Study duration:
- subchronic
- Species:
- mouse
- Quality of whole database:
- Adequate information is available to characterise the oral carcinogenicity of benzene in animals and humans.
Carcinogenicity: via dermal route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Justification for classification or non-classification
It is concluded that benzene is carcinogenic in animals and humans and therefore is classified as follows: Carcinogenic Cat 1A, H350 under Regulation (EC) No 1272/2008 of the European Parliament.
Additional information
Non-human data
Oral
Oral cancer studies showed increased tumour rates in multiple organs, some of which were also tumour sites in the inhalation studies. The majority of tumour types at sites other than the haematopoietic system are of epithelial origin. In mice benzene produced increased tumour incidences in Zymbal gland, (Cronkite et al,1985; Farris et al, 1993; NTP, 1986; Maltoni et al, 1989), lung (Farris et al, 1993; NTP, 1986; Maltoni et al, 1989), Harderian gland (NTP, 1986), preputial gland (Farris et al,1993; NTP, 1986), forestomach (Farris et al, 1993; NTP, 1996), mammary gland (NTP, 1986; Maltoni et al, 1989), liver (Maltoni et al, 1989) and ovaries (Cronkite et al, 1985; NTP, 1986). In rats, benzene treatment was associated to increased tumour incidences in the Zymbal gland (NTP, 1986; Maltoni et al, 1989), oral cavity (NTP, 1986; Maltoni et al, 1989), forestomach (Maltoni et al, 1989), nasal cavity (Maltoni et al, 1989), and skin (NTP, 1986; Maltoni et al, 1989).
Dermal
No published data are available.
Inhalation
From several animal studies with inhalation and oral exposure there is evidence that benzene is carcinogenic. Target organs were similar in several studies irrespective of the application route and include the haematopoietic system and tissues of epithelial origin. The predominant tumours induced in the inhalation studies were located in the haematopoietic system, particularly lymphomas in mice (Farris et al, 1993; NTP 1986; Cronkite, 1985). In rats, increased frequencies of leukaemia in comparison to controls were found in benzene-exposed Sprague-Dawley rats and Wistar rats (Maltoni et al, 1989) and one case (out of 40 animals) of chronic myelogenous leukaemia was reported in Sprague-Dawley rats exposed to benzene (Goldstein et al, 1982).
Human data
For updated Human data (see section 7.10 Endpoint Summary). This section will be revised in the next the next dossier update.
References
Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L and Cogliano V (2009). A review of human carcinogens—Part F: Chemical agents and related occupations. The Lancet Oncology 10, 1143-1144.
Bloeman LJ, Youk A, Bradley TD, Bodner KM & Marsh G (2004). Lymphohaematopoietic cancer risk among chemical workers exposed to benzene. Occup. Environ. Med. 61, 270-274.
Cronkite EP, Drew RT, Inoue T and Bullis JE (1985). Benzene hematotoxicity and leukemogenesis. Am J Ind Med 7, 447-456.
Crump KS (1994). Risk of benzene-induced leukemia: a sensitivity analysis of the Pliofilm cohort with additional follow-up and new exposure estimates. J Toxicol Environ Health 42, 219-242.
Crump KS and Allen BC (1984). Quantitative estimates of risk of leukemia from occupational exposure to benzene. Prepared for the Occupational Safety and Health Administration by Science Research Systems, Inc., Ruston, LA. Unpublished
EC (1993). Occupational exposure limits: Criteria document for benzene. Report EUR 14491 en, ISSN 1018-5593, Commission of the European Communities, pp126.
EC (1999). Council Directive 1999/38/EC of 29 April 1999 amending for the second time Directive 90/394/EEC on the protection of workers from the risks related to exposure to carcinogens at work and extending it to mutagens. Official Journal of the European Communities, L138, 66-69, 1 June 1999.
ECHA (2008). Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health, pp150.
Farris GM, Everitt JI, Irons RD, Popp JA (1993). Carcinogenicity of inhaled benzene in CBA mice. Fund Appl Toxicol 20, 503-507.
Glass DC, Gray CN, Jolley DJ, Gibbons C, Sim MR (2005). Health Watch exposure estimates: do they underestimate benzene exposure? Chem Biol Interact 153 -154, 23-32.
Glass DC, Gray CN, Jolley DJ, Gibbons C, Sim MR (2006). The health watch case-control study of leukemia and benzene: the story so far. Ann N Y Acad Sci 1076, 80-9.
Glass DC, Gray CN, Jolley DJ, Gibbons C, Sim MR, Fritschi L, Adams GG, Bisby JA, and Manuell R (2003). Leukemia risk associated with low-level benzene exposure. Epidemiology 14, 569–577. Epidemiology. 2004;15, 509; author reply 510-1.
Goldstein BD, Snyder CA, Laskin S, Bromberg I, Albert RE and Nelson N. (1982). Myelogenous leukaemia in rodents inhaling benzene. Toxicology Letters 13, 169 -173.
Gun RT, Pratt N, Ryan P, Roder D (2006). Update of mortality and cancer incidence in the Australian petroleum industry cohort. Occup Environ Med 63, 476-81.
Hayes RB, Yin SN, Dosemeci M, Li GL, Wacholder S, Travis LB, Li CY, Rothman N, Hoover RN and Linet MS (1997). Benzene and the dose-related incidence of haematologic neoplasms in China. Natl Cancer Inst 89, 1065-1071
IARC (International Agency for Research on Cancer) (1982). IARC monographs on the evaluation of carcinogenic risks of chemicals to humans: some industrial chemicals and dyestuffs. Vol. 29, IARC, pp. 93-148.
Irons RD, Gross SA, Le A, Wang XQ, Chen Y, Ryder J, Schnatter AR. Integrating WHO 2001-2008 criteria for the diagnosis of Myelodysplastic Syndrome (MDS): a case-case analysis of benzene exposure. Chem Biol Interact. 2010;184:30-8.
Maltoni C, Ciliberti A, Cotti G, Conti B and Belpoggi F (1989). Benzene, an experimental multipotential carcinogen: results of the long-term bioassays performed at the Bologna Institute of Oncology. Environmental Health Perspective 82, 109-124.
NTP (1986). Toxicology and carcinogenesis studies of benzene (CAS No. 71-43-2) in F344/N rats and B6C3F1 mice (gavage studies). NIH publication number 86 -2545. Testing laboratory: Battelle Columbus Laboratories. Report no.: TR 289. Study number: NTP TR 289.
Paustenbach DJ, Price PS, Ollison W, Blank C, Jernigan JD, Bass RD, Peterson HD (1992). Reevalution of benzene exposure for the Pliofilm (rubberworker) cohort (1936-1976). J Toxicol Environ Health 36, 177-231.
Paxton MB, Chinchilli VM, Brett SM and Rodricks JV (1994a): Leukaemia risk associated with benzene exposure in the Pliofilm cohort: I. Mortality update and exposure distribution. Risk analysis 14: 147-54
Paxton MB, Chinchilli VM, Brett SM and Rodricks JV (1994b): Leukaemia risk associated with benzene exposure in the Pliofilm cohort: II. Risk estimates. Risk analysis 14: 155-61
Richardson DB (2008). Temporal variation in the association between benzene and leukemia mortality. Environ Health Perspect. 116(3):370-4.
Rinsky RA, Young RJ, and Smith AB (1981). Leukaemia in benzene workers. American Journal of Industrial Medicine 2, 217-45.
Rinsky RA, Smith AB, Hornung RW, Filloon TG, Young RJ, Okun AH, and Landrigan PJ (1987). Benzene and leukemia. An epidemiological risk assessment. New England Journal of Medicine 316: 1044-50
Rinsky RA, Hornung RW, Silver SR and Tseng CY (2002). Benzene exposure and haematopoietic mortality: a long-term epidemiologic risk assessment. Am J Ind Med, Vol 42, pp 474-480.
Rushton L and Romaniuk H (1997). A case-control study to investigate the risk of leukaemia associated with exposure to benzene in petroleum marketing and distribution workers in the United Kingdom. Occup Environ Med 54, 152-166.
Schnatter AR, Armstrong TW, Nicolich MJ, et al. Lymphohaematopoietic malignancies and quantitative estimates of exposure to benzene in Canadian petroleum distribution workers. Occup Environ Med. 1996;53:773–781.
Schnatter, AR, Glass DC, Tang G, Irons RD and Rushton L (2012).Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J Natl Cancer Inst, 104, 1724-37
Schnatter AR, Rosamilia K, Wojcik NC (2005). Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact.153-154, 9-21.
Swaen GM, Scheffers T, de Cock J, Slangen J and Drooge H (2005). Leukemia risk in caprolactam workers exposed to benzene. Ann Epidemiol 15, 21-8.
Swaen GM, van Amelsvoort L, Twisk JJ, Verstraeten E, Slootweg R, Collins JJ, Burns CJ (2010). Low level occupational benzene exposure and hematological parameters. Chem Biol Interact 2010 Jan 14. [Epub ahead of print]
Texas Commission on Environmental Quality (TCEQ) (2007). Development Support Document. Benzene. Chief Engineer’s Office. Available: http://tceq.com/assets/public/implementation/tox/dsd/final/benzene_71-43-2_final_10-15-07.pdf
Utterback DF and Rinsky RA (1995). Benzene exposure assessment in rubber hydrochloride workers: a critical evaluation of previous estimates. Am J Indust Med 27, 661-76.
Vlaanderen J, Portengen L, Rothman N, Lan Q, Kromhout H, Vermeulen R. (2010) Flexible meta-regression to assess the shape of the benzene-leukemia exposure-response curve. Environ Health Perspect. 118:526-32.
WHO (2000). Air quality guidelines for Europe, 2nd ed., World Health Organization Regional Office for 2000 (WHO Regional Publications, European Series No. 91).
Wong O, Harris F, Yiying W, Hua F. A hospital-based case-control study of acute myeloid leukemia in Shanghai: analysis of personal characteristics, lifestyle and environmental risk factors by subtypes of the WHO classification. Regul Toxicol Pharmacol 2009;55:340-52.
Justification for selection of
carcinogenicity via oral route endpoint:
Rodent oral cancer studies showed increased tumour rates in multiple
organs, some of which were also tumour sites after inhalation. The
majority of tumour types at sites other than the haematopoietic system
are of epithelial origin.
Justification for selection of carcinogenicity via inhalation route
endpoint:
The predominant tumours induced in animal inhalation studies were
located in the haematopoietic system, particularly lymphomas in mice. In
rats, increased frequencies of leukaemia in comparison to controls were
found in benzene-exposed Sprague-Dawley rats and Wistar rats, with one
report of chronic myelogenous leukaemia. In humans, benzene causes acute
myelogenous (non-lymphocytic) leukaemia (AML or ANLL), however IARC has
concluded that evidence of an association between benzene exposure and
acute lymphocytic leukaemia (ALL), chronic lymphocytic leukaemia (CLL),
multiple myeloma and non-Hodgkin’s lymphoma (NHL) is limited, while
evidence for chronic myeloid leukaemia (CML) is inadequate.
Carcinogenicity: via oral route (target organ): other: all gross
lesions and masses
Carcinogenicity: via inhalation route (target organ): cardiovascular
/ hematological: bone marrow
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.