Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

The hazard assessment is based on the data currently available. New studies with the registered substance and/or other member substances of the glycol esters category will be conducted in the future. The finalised studies will be included in the technical dossier as soon as they become available and the hazard assessment will be re-evaluated accordingly.

For further details, please refer to the category concept document attached to the category object (linked under IUCLID section 0.2) showing an overview of the strategy for all substances within the glycol esters category.

Additional information

The hazard assessment is based on the data currently available. New studies with the registered substance and/or other member substances of the glycol esters category will be conducted in the future. The finalised studies will be included in the technical dossier as soon as they become available and the hazard assessment will be re-evaluated accordingly.

For further details, please refer to the category concept document attached to the category object (linked under IUCLID section 0.2) showing an overview of the strategy for all substances within the glycol esters category.

 

Several experimental studies confirmed that all members of the Glycol Esters Category are readily biodegradable according to the OECD criteria (61 - 82% biodegradation after 28 d). Therefore, the category members will not be persistent in the environment. The degradation via abiotic hydrolysis is not considered to be a relevant degradation pathway in the environment since QSAR results using HYDROWIN v2.00 resulted in DT50 > 1 yr at pH 7.

Considering the low water solubility (< 0.05 mg/L) and the potential for adsorption to organic soil and sediment particles (log Koc: 3.4 - 9.1, MCI method, KOCWIN v2.00), the main compartment for environmental distribution is expected to be the soil and sediment. Nevertheless, persistency in these compartments is not expected since the members of the Glycol Esters Category are readily biodegradable. Evaporation into air and the transport through the atmospheric compartment is not expected since the category members are not volatile based on the low vapour pressure (VP:≤ 0.066 Pa). Accumulation in air and the subsequent transport to other environmental compartments is not anticipated. However, if released into air, all category members are susceptible to indirect photodegradation by OH-radicals with a DT50: < 24 h (AOPWIN v1.92).

Due to the low water solubility, rapid environmental biodegradation and metabolisation via enzymatic hydrolysis of the Glycol Esters category members, a relevant uptake and bioaccumulation in aquatic organisms is not expected. Enzymatic breakdown will initially lead to the free fatty acid and the free glycol alcohol (e. g. ethylene glycol). From literature it is well known, that these hydrolysis products will be metabolised and excreted in fish effectively (Heymann, 1980; Lech & Bend, 1980; Lech & Melancon, 1980; Murphy & Lutenske, 1990). This is supported by low calculated BCF values of 0.893 - 89.4 L/kg ww (BCFBAF v3.01, Arnot-Gobas, including biotransformation, upper trophic).