Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 931-299-4 | CAS number: 68390-94-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Partition coefficient
Administrative data
Link to relevant study record(s)
- Endpoint:
- partition coefficient
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.
2. MODEL (incl. version number)
KOWWIN v1.68
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Overall remarks, attachments" section.
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- Calculation based on KOWWIN v1.68, Estimation Programs Interface Suite™ for Microsoft® Windows v4.10. US EPA, United States Environmental Protection Agency, Washington, DC, USA.
Model(s) used: KOWWIN v1.68
The octanol-water partition coefficient of organic compounds is estimated starting from the chemical structure, which is divided into fragments (atom or larger functional groups). Coefficient values of each fragment or group are summed together to yield the log P estimate. For the complete method's description see field 'Any other information on materials and methods incl. tables'.
The datasets used for the model development (2447 molecules) and for the external validation (10946 molecules) are described in the field 'Any other information on materials and methods incl. tables'.
Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Partition coefficient type:
- octanol-water
- Type:
- log Pow
- Partition coefficient:
- 13.98
- Remarks on result:
- other: C18-C18, pH and temperature not given (QSAR)
- Type:
- log Pow
- Partition coefficient:
- 13
- Remarks on result:
- other: C18-C16, pH and temperature not given (QSAR)
- Type:
- log Pow
- Partition coefficient:
- 12.02
- Remarks on result:
- other: C16-C16, pH and temperature not given (QSAR)
- Conclusions:
- The constituents fit in the applicability domain of the model. The predictions are valid and can be used for classification and risk assessment.
Reference
Constituents of the substance contain long alkyl chains. Even in the case of the shortest chains (C16 -C16), the number of -CH2- instances (30) exceeds the maximum number of those instances in the training set molecules (18). As a consequence, all 3 constituents are not completely compliant with the applicability domain of the model, and it can be with a high confidence estimated that the log Kow is high: log Kow > 10.
Description of key information
The results of the calculations clearly indicate that the substance is highly lipophilic, with an estimated log Kow > 10 (QSAR, EPI Suite v4.11, KOWWIN v1.68)
Key value for chemical safety assessment
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.