Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 942-993-1 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Hydrolysis
Administrative data
Link to relevant study record(s)
Description of key information
Substance half-life for hydrolysis: pH 5: t1/2: ca. 24 hours; pH 7: t1/2: ca. 24 hours; pH 8.5: t1/2: ca. 24 hours, at 40 °C, 1 atm, eq. or similar to OECD 111, Firmenich SA 2011
Key value for chemical safety assessment
Additional information
Eq. or similar to OECD TG 111 - preliminary screening study, 2011 - The hydrolytic stability of the test item was investigated using a method similar or equivalent to OECD TG 111 (hydrolysis as a function of pH) and EU Method A.7. The test media are standard aqueous buffers at pH 2, pH 5, pH 7, pH 8.5 and pH 12 containing 1% of non-ionic surfactant (Arkopal N 150). The tests are done in accelerated conditions at 40°C for approximately one month (28d). 200 – 300 ppm of test substance are dissolved in the pH buffer containing the surfactant and put into storage in an oven at 40°C. Commercial reference grades of buffer are utilised as listed in documented literature sources. Small aliquots of the test solution are extracted with an organic solvent (typically cyclohexane or ethyl acetate) containing a hydrocarbon standard (typically C12, C17 or C20) on a regular basis throughout the test (typically at time = 0, 0.25, 1, 2, 4, 7, 15, 21 and 28 days). The extracts are analysed by GC-FID. Under the analytical conditions employed (1) all isomers of methyl linolenate eluted together and (2) methyl oleate and the results were then plotted with time to show the degradation curves of the substance. For the isomers of methyl linolenate at pH 7 there is 50% degradation at 24 hours and complete degradation (> 90%) by 5d. At pH 8.5 the substance is degraded by 50% within 24 hours and there is complete degradation within 48 hours. At mildly acidic pH there is 50% degradation at < 72 hours and maximum degradation (> 80 %) at 15 days. For methyl oleate at pH 7 and 8.5 there is complete degradation (> 90%) within 5 days and with 50% degradation at between 72-96 hours. At pH 2 and 5 maximum degradation (ca. 80%) during the period of the test is seen at approximately 8 days. Applicant expert assessment indicates that it can be concluded that > 80% of the reaction mass of the test item looks to be degraded within 5 days. Assessment of the data on methyl linoleate isomers indicates: the substance follows first-order kinetics at acidic (t0.5 = ca. 72h) and for neutral pH and in alkali pH (t0.5 = approximately 24d). A change in mechanism moving from neutral pH to acidic conditions (with second-order kinetics) may be occurring however this is not conclusive. Under the conditions of the test the substance is not hydrolytically stable as defined in the OECD TG 111 for hydrolysis as a function of pH.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.