Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: - | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Bioaccumulation: terrestrial
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
Additional information
Boron is known to be a critical element for the normal growth and productivity of terrestrial plants. Boron is required in plants for normal metabolic functioning of sugar transport, cell wall synthesis, lignification, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid (growth regulator) metabolism, phenol metabolism, the integrity of membranes, and the pollination process (Marschner, 1995). There is a certain minimum requirement of boron for a plant. However, there are considerable interspecies differences in the levels required for optimal growth. Monocotyledons generally require less than dicotyledons (Gupta et al, 1985).
Boron uptake varies with stage of growth and the concentration varies among the plant parts (Gupta et al, 1985). Plants also are known to change soil pH locally by root exudates to enhance uptake of essential nutrients (Reimann et al. 2001, WHO 1998).
The uptake mechanism has long been debated. It was first suggested that boron moves to the root surface in the soil solution by mass flow and enters the roots by passive diffusion (Bingham et al, 1970). However this concept has been challenged by Bowen (1968, 1969, 1972), Bowen and Nissen (1977), and Reisenauer et al (1973). They indicated that boron is actively absorbed in ionic form particularly when the boron concentration in soil is low (Gupta et al, 1985). This has been confirmed by more recent studies, which provided evidence for channel- and/or transporter-mediated boron transport systems (Tukano et al, 2005). The isolation of the boron transporter in BOR1-1 mutant plants showed elevated sensitivity to boron deficiency, especially in young growing organs in shoots. BOR1 is a membrane protein that belongs to the bicarbonate transporter superfamily (Takano et al, 2002; Frommer et al 2002).
Takano et al (2005) found that the activity of the BOR1 plasma membrane transporter for boron in plant is regulated (endocytosis and degradation) by boron availability, to avoid accumulation of toxic levels of boron in shoots under high boron supply, while protecting the shoot from boron deficiency under boron limitation.
Once in the plant, boron is passively carried in the transpiration stream to the leaves where the water evaporates and boron accumulates. This explains why boron concentrations are generally lower in roots, stems, and fruits than in leaves (WHO 1998). Once assimilated by the plant, boron becomes one of the least mobile micronutrients (Wolg 1940, Eaton 1944, Dible and Berger, 1952). Since boron is not readily transported from old to young plant parts, the earliest deficiency symptoms are found in young parts while the earliest toxicity symptoms are found in the old plant parts (Gupta et al, 1985).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.