Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
basic toxicokinetics
Type of information:
other: theoretical approach
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Study is based on expert judgement.

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2007
Report date:
2007

Materials and methods

Objective of study:
other: Assessment of toxicokinetic behaviour
GLP compliance:
no
Remarks:
not applicable

Test material

Constituent 1
Test material form:
solid: particulate/powder
Remarks:
migrated information: powder
Details on test material:
- Physical state: solid
- Appearance: grey powder with lumps
- Storage condition of test material: room temperature in the dark

Results and discussion

Any other information on results incl. tables

The toxicokinetic assessment in this report is limited to the active substance in the technical material (declared purity: > 90 %).

The water solubility of LiFePO4 is low (<1 mg/L, pH 6.4). Since in general a substance needs to be dissolved before it
can be taken up from the gastro-intestinal tract, it is unlikely that LiFePO4 will show a high systemic exposure
after oral administration, anticipating a low water solubility at low pH. Although small amounts of particles
might be taken up by pinocytosis, this absorption will be limited due to the absence of LiFePO4 particles in the
nanometer size range. 

The LiFePO4 which dissolves will disintegrate into iron, lithium and phosphate. The iron (being an essential metal) will be taken up, regulated to maintain homeostasis and influenced by the nutritional
constituents in the G-I tract. Generally about 2 to 15 % of the iron is absorbed from the G-I tract (1). 

Lithium is considered to be readily absorbed from the G-I tract (1).
Phosphate being ubiquitous is not further considered. A highly lipophylic character of a substance indicates that
uptake by micellular solubilisation may be of particular importance; however the logPow of LiFePO4 is not clearly
defined (logPow > 0.564; no evidence on whether this is for the complex or the ions) and hence the relevance of this
mechanism can not be assessed. For risk assessment purposes the oral absorption of LiFePO4 is set at 10 %. The results of the toxicity studies do not provide reasons to deviate from this proposed oral absorption factor.

After absorption, iron will mainly be bound to hemoglobin, myoglobin and iron containing enzymes, remainder being bound
to the iron storage proteins ferritin and hemosiderin. Iron excretion is limited and can occur via bile, urine, sweat,
nails, and hair (1). Lithium will be distributed uniformly over the human organs and is mainly excreted via the urine (1).

Based on the particle size of LiFePO4, particles will either settle in the nasopharyngeal region (particles with
aerodynamic diameter > 1-5 µm) or in the tracheobronchial or pulmonary region (particles with aerodynamic diameter < 1-5
µm). The low water solubility of LiFePO4 indicates a potential for clearance by coughing/sneezing (nasopharyngeal
region) or via the mucociliary mechanism (tracheobronchial region). Accumulation might occur in the alveolar region
where phagocytosis is the main route for absorption and clearance. As the logPow (> 0.564) is not clearly defined
for this substance, no assessment on the potential for absorption directly across the respiratory tract epithelium
is possible. As it is unlikely that LiFePO4 will be absorbed significantly after inhalation via the lungs, for risk
assessment purposes the inhalation absorption of LiFePO4 is set at 10% as a worst case assumption.

LiFePO4 being a solid with a low water solubility (<1 mg/L) has no real potential for dermal absorption. Based on the
not clearly defined logPow (> 0.564) of this substance, it can not be assessed whether any anticipated lipophylic
character will influence dermal absorption. Although the criteria for 10 % dermal absorption as given in the TGD (2)
(MW > 500 and logPow > 4) are not met, 10 % dermal absorption of LiFePO4 is proposed for risk assessment
purposes  based on its solid form and low solubility in water and  n-octanol (3.67 mg/L). The results of the
toxicity  studies do  not provide reasons to deviate from this proposed  dermal absorption factor.

References

1. R.A. Goyer. In: Casarett and Doull’s Toxicology, The basic science of poisons. Sixth edition. Ed. C.D. Klaassen. Chapter 23: Toxic effects of metals. McGraw-Hill, New York, 2001.

2. ECB EU Technical Guidance Document on Risk Assessment, 2003.

Applicant's summary and conclusion