Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 287-494-3 | CAS number: 85536-14-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Sediment toxicity
Administrative data
Link to relevant study record(s)
Description of key information
Three sediment toxicity studies are available using LAS (read across). The first study (Comberet al. 2006) determined the toxicity to sediment dwelling worms. Samples of natural sediment were spiked with test substance at concentrations of 50, 75, 100, 150, 300, and 600 mg/kg/dry weight. Ten test organisms of species Lumbriculus variegatus were then added. Exposure lasted 28 days, at which time the organisms were observed for survival and biomass. The test substance half-life in aerobic sediment was approximately 20 days. The EC50 was ≥ 105 mg/kg sediment dry weight. The NOEC was 81 mg/kg sediment dry weight.
The second study (Comberet al. 2006) consisted of samples of natural sediment spiked with concentrations of 10, 50, 100, 200, 300, 400, 500, 750 and 1000 mg/kg dw and controls. Ten test organisms of the nematode species Caenorhabditis elegans were then added. Exposure lasted 3 days, at which time the organisms were observed for survival and reproduction. The NOEC for egg production was 100 mg/kg sediment dw, the NOEC for fertility was 200 mg/kg sediment dw and the EC10 for growth was 275 mg/kg sediment dw.
In the final toxicity study (Pittinger et al. 1989; The Procter & Gamble Company 1986; van de Plassche et al 1999), which was conducted following the OECD 218 guideline, the midge Chironomus riparius, was exposed to C11.9LAS for 24 days. This actually consisted of a series of separate tests. In an egg hatchability semi-static assay (acute test), midge eggs were exposed to a range of LAS concentrations in water and were monitored for hatching success and posthatch survival. No significant reduction in egg hatching was observed at the highest concentration tested (18.9 mg/L). However, significant reduction in the survival of the newly hatched larvae occurred at 4.7 mg/L. The 72 hour LC50was between 1.0 and 4.7 mg/L, based on survival of newly hatched larvae. In the partial life cycle bioassay in a flow-through sediment/water test system (chronic test), percentages of winged adults emerging after continuous exposure of larvae and pupae to a range of LAS concentrations were determined. Exposure concentrations in sediment, interstitial water and overlying water were monitored by14C liquid scintillation counting. The effect of LAS level in the water column was determined in a total of six chronic toxicity tests. The NOECs from these tests ranged from 2.4 to 3.0 (without sediment), and 3.0 to 6.0 (with sediment). The effect of LAS on Chironomus was also evaluated in an experiment using sediment spiked with LAS. In this test, the NOEC of sediment-spiked LAS was 319 mg/kg sediment (dry weight basis). The normalized NOEC is 2.87 mg/L for C11.6LAS.
Key value for chemical safety assessment
- EC10, LC10 or NOEC for freshwater sediment:
- 81 mg/kg sediment dw
Additional information
LAS provides suitable read across for LAB Sulfonic Acids as both form the identical chemical species in aqueous solutions at neutral (physiological) pH. Three toxicity studies are available for sediment organisms. Test materials are considered to represent the materials in the category. As summarized in the Table below, the average alkyl chain lengths of tested materials ranged from C11.4 to C11.8, similar to C11.6 for the LAB Sulfonic Acids/LAS typically used in European detergent formulations. The C14 homologue content of tested materials was not reported for the C11.4 LAS (and likely to be <=1%) while the C14 content for the C11.8 LAS was 8.7%, compared to <1% for the LAB Sulfonic Acids/LAS used in European detergent formulations. The lowest sediment data point is a 28 day NOEC = 81 mg/kg sediment dw for the earthworm Lumbriculus variegates using C11.4 LAS.
Table: Alkyl Chain Lengths and C14 Content of LAS Used in Sediment Toxicity Tests*
Test |
Average Alkyl Chain Length |
C14 Homologue Content |
Results |
.001 Earthworm (Lumbriculus variegates) |
C11.4 |
N/A |
28 day NOEC = 81 mg/kg sediment dw |
.002 Nematode (Caenorhabditis elegans) |
C11.4 |
N/A |
72 hour NOEC (egg production) = 100 mg/kg sediment dw |
.003 (midge,Chironomus riparius), water only test |
C11.8 |
8.7% |
24 day NOEC = 319 mg/kg sediment dw |
* N/A = not available, dw = dry weight.
Based on the availability of toxicity data on three sediment organisms, the assessment factor (AF) method was used to determine the PNECsediment in accordance with R.10.5.2.2. Based on the lowest NOEC value from the three studies (81 mg/kg sediment dw) and an AF = 10 (in accordance with Table R.10-7), the final calculated PNECsediment-freshwater value is 8.1 mg/kg sediment dw. Applying an additional assessment factor of 10 for marine systems results in the final calculated PNECsediment-marine value of 0.81 mg/kg sediment dw.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.