Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 215-160-9 | CAS number: 1308-38-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
The solubility of chromium (III) oxide in environmental media is low. In a short-term transformation/dissolution test with a loading of 100 mg/L, a dissolved Cr concentration of 0.11 microg/L Cr was determined at pH 6 after 7 days whereas dissolved Cr concentrations were below the LOD (< 1 microg/L) at pH 8. Transformation/dissolution at a loading of 1 mg/L resulted in dissolved chromium concentrations below the LOD (< 0.01 microg/L) at pH 6 after 7 days and 28 days. Furthermore, chromium (VI) could not be detected during the test (< 0.01 microg/L) (Hedberg and Wallinder, 2012). Thus, the rate and extent to which chromium (III) oxide produces soluble (bio)available ionic and other chromium-bearing species in environmental media is limited. Further, the poor solubility of chromium (III) oxide is expected to determine its behaviour and fate in the environment and subsequently its environmental toxicity, or the lack thereof.
Proprietary studies are not available for chromium (III) oxide. The fate of chromium (III) oxide in the environment is evaluated by assessing the fate of its ecotoxicologically relevant moiety, the chromium (III) ion, and read-across to data available for other chromium (III) substances is applied. Data are available on aquatic and terrestrial bioaccumulation and adsorption of chromium (III). For a documentation and justification of the read-across approach, please refer to the separate document attached to section 13, namely Read Across Assessment Report for chromium (III) oxide.
Chromium (III) oxide does not oxidize in laboratory tests but is rather sorbed by various soil components, including organic matter and iron oxides and unavailable for oxidation. Since the solubility of chromium (III) oxide is low, a low mobility can be expected in aquatic and terrestrial systems. Accordingly, the potential for bioaccumulation of chromium (III) oxide in aquatic and terrestrial environments is low based on its poor solubility in environmental media and the low BAFs available for soluble chromium (III) substances.
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.