Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 701-179-4 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Key value for chemical safety assessment
Additional information
The substance Octadecanoic acid, sulfo-, potassium salt was tested in the Salmonella typhimurium Reverse Mutation Assay for the induction of reverse mutations in a bacterial test system. The assay was performed with the Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538 in two independent experiments, both with and without metabolic activation by S9-mix. Solutions of the test substance were prepared in aqua bidist. water and diluted with the same solvent just before use. No enhanced revertant rates compared to concurrent negative controls, induced by the test substance were observed in all tested strains, neither in the presence nor in the absence of metabolic activation. In conclusion, it can be stated that in the study described and under the experimental conditions reported, the test substance did not induce gene mutations in Salmonella typhimurium strains.
The substance Octadecanoic acid, sulfo-, potassium salt was assessed for its potential to induce gene mutations at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in Chinese hamster ovary (CHO) cells in vitro. Two independent experiments were carried out, both with and without the addition of liver S9 mix from phenobarbital- and β-naphthoflavone induced rats (exogenous metabolic activation).
Based on the results of the present study, the test substance did not cause any dosedependent increase in the mutant frequencies both without S9 mix and after the addition of a metabolizing system in two experiments performed independently of each other. Thus, under the experimental conditions of this study, the test substance Octadecanoic acid, sulfo-, potassium salt is not mutagenic in the HPRT locus assay under in vitro conditions in CHO cells in the absence and the presence of metabolic activation.
The substance Octadecanoic acid, sulfo-, potassium salt was assessed for its potential to induce micronuclei in V79 cells in vitro(clastogenic or aneugenic activity). Two independent experiments were carried out, both were carried out with and without the addition of liver S9 mix from induced rats (exogenous metabolic activation).
On the basis of the results of the present study, the test substance did not cause any biologically relevant increase in the number of cells containing micronuclei either without S9 mix or after adding a metabolizing system. Thus, under the experimental conditions described, Octadecanoic acid, sulfo-, potassium salt is considered not to have a chromosome-damaging (clastogenic) effect nor to induce numerical chromosomal aberrations (aneugenic activity) under in vitro conditions in V79 cells in the absence and the presence of metabolic activation.
In summary, the substance Octadecanoic acid, sulfo-, potassium salt does not have a genotoxic potential .
Short description of key information:
genetic toxicity in vitro (Ames test): negative
genetic toxicity in vitro (HPRT test): negative
micronucleus test in vitro (chromosome aberration): negative
Endpoint Conclusion: No adverse effect observed (negative)
Justification for classification or non-classification
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
