Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 234-666-0 | CAS number: 12021-95-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- PNEC aqua (freshwater)
- PNEC value:
- 0.119 mg/L
- Assessment factor:
- 10
- Extrapolation method:
- assessment factor
- PNEC freshwater (intermittent releases):
- 0.078 mg/L
Marine water
- Hazard assessment conclusion:
- PNEC aqua (marine water)
- PNEC value:
- 0.119 mg/L
- Assessment factor:
- 10
- Extrapolation method:
- assessment factor
STP
- Hazard assessment conclusion:
- PNEC STP
- PNEC value:
- 1.29 mg/L
- Assessment factor:
- 10
- Extrapolation method:
- assessment factor
Sediment (freshwater)
- Hazard assessment conclusion:
- PNEC sediment (freshwater)
- PNEC value:
- 21.1 mg/kg sediment dw
- Assessment factor:
- 10
- Extrapolation method:
- assessment factor
Sediment (marine water)
- Hazard assessment conclusion:
- PNEC sediment (marine water)
- PNEC value:
- 4.22 mg/kg sediment dw
- Assessment factor:
- 50
- Extrapolation method:
- assessment factor
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- PNEC soil
- PNEC value:
- 16.5 mg/kg soil dw
- Assessment factor:
- 10
- Extrapolation method:
- sensitivity distribution
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- no potential for bioaccumulation
Additional information
Dihydrogen hexafluorozirconate rapidly dissociates into fluoride, hydrogen and zirconium ions upon dissolution in the environment. However, hydrogen and zironium ions do not remain as such in solution, only fluoride ions do. The hydrogen ion attaches to a hydroxide ion to form a water molecule. The analysis of dissolved zirconium levels in aquatic toxicity test solutions for algae, daphnia and fish according to OECD 201, 202 and 203 (Schlechtriem, 2013a, b; Teigeler, 2013) indicates that up to a loading of 10 mg/L dipotassium hexafluorozirconate, very low levels of zirconium remain in solution at environmentally relevant pH (< 10%) while more than 75 % of the fluoride could be recovered. Indeed, under most environmental conditions, zirconium displays a very low mobility, mainly due to the low solubility of the hydroxide Zr(OH)4. This limits the concentration of dissolved Zr in most natural solutions (fresh water, seawater as well as soil and sediment porewater) to <0.05 μg/L. Depending on the pH of the environmental medium, different zirconium species exist in solution, including Zr4+, and various hydroxides. At pH 7, a Zr(OH)2(CO3)22-complex may form, but the complex is unstable and Zr(OH)4forms with decreasing pH. The hydro-bicarbonate (Zr(OH)4-HCO3-H2O) complex may be the most significant Zr complex in natural water (http://www.gtk.fi/publ/foregsatlas, accessed on 12.03.2013). Thus, regarding the environmental toxicity of dihydrogen hexafluorozirconate, it can be assumed that toxicity (if any) will be driven by the fluoride anion. Therefore, full read-across to potassium fluoride (CAS #7789-23-3) and other fluorides based upon a molecular weight conversion is justified.
Data of the structural analogue dipotassium hexafluorozirconate are availabe and are read-across to address the acute toxicity at three throphic levels, i.e. algae, daphnia and fish, while chronic data are only available for algae, the apparently most sensitive trophic level. Chronic toxicity data for invertebrates and fish of potassium fluoride (CAS #7789-23-3) and other fluorides are furthermore read-across. Based on available read-across data, it can be assumed that the aquatic toxicity potential of dihydrogen hexafluorozirconate is low and below relevant classification criteria of Directive 67/548 EEC and CLP Regulation (EC) No 1272/2008.
Conclusion on classification
According to Directive 67/548 EEC and CLP Regulation (EC) No 1272/2008, a classification and labelling for aquatic toxicity of dihydrogen hexafluorozirconate is not required.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.