Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 204-697-4 | CAS number: 124-40-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Dermal absorption
Administrative data
- Endpoint:
- dermal absorption in vivo
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: acceptable well-documented publication, which meets basic scientific principles
Cross-reference
- Reason / purpose for cross-reference:
- reference to same study
Data source
Reference
- Reference Type:
- publication
- Title:
- Additive Impairment of the Barrier Function and Irritation by Biogenic Amines and Sodium Lauryl Sulphate: A Controlled in vivo Tandem Irritation Study
- Author:
- Fluhr, J.W., Kelterer, D., Fuchs, S., Kaatz, M., Grieshaber, R., Kleesz, P., and Elsner, P.
- Year:
- 2 005
- Bibliographic source:
- Skin Pharmacol Physiol 2005;18:88–97
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- other: Frosch PJ, Kligman AM: The soap chamber test: A new method for assessing the irritancy of soaps. J Am Acad Dermatol 1979;1:35–41.
- Qualifier:
- according to guideline
- Guideline:
- other: Pinnagoda J, Tupker RA, Agner T, Serup J: Guidelines for transepidermal water loss (TEWL) measurement: A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1990; 22:164–178.
- Qualifier:
- according to guideline
- Guideline:
- other: Rogiers V: EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 2001;14:117–128
- Qualifier:
- according to guideline
- Guideline:
- other: Fullerton A, Fischer T, Lahti A, Wilhelm KP, Takiwaki H, Serup J: Guidelines for measurement of skin colour and erythema: A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1996;35:1–10
- Qualifier:
- according to guideline
- Guideline:
- other: Parra JL, Paye M: EEMCO Guidance for the in vivo assessment of skin surface pH. Skin Pharmacol Appl Skin Physiol 2003;16:188–202
- GLP compliance:
- no
Test material
- Reference substance name:
- Dimethylamine
- EC Number:
- 204-697-4
- EC Name:
- Dimethylamine
- Cas Number:
- 124-40-3
- Molecular formula:
- C2H7N
- IUPAC Name:
- N-methylmethanamine
- Details on test material:
- DMA [NH(CH3)2; CAS No. 124-40-3; synonym: N-methylmethanamine],
purchased from Merck Schuchardt, Ottobrunn, Germany
Solutions of all compounds (DMA 1.0%, TMA 1.5%) in distilled water with a pH of 7.2 were prepared
Constituent 1
- Radiolabelling:
- no
Test animals
- Species:
- human
- Strain:
- other: not applicable
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- The study was performed in a single-blinded, randomized manner under standardized laboratory conditions using air-conditioning with a room temperature between 20 and 22°C and a relative humidity between 30 and 40%.
20 healthy, non-preselected Caucasian volunteers (11 males and 9 females; aged 19–46 years, median age 28.3 years) without any skin or other systemic diseases were included. During the study period, the subjects were allowed to shower as usual, but they were instructed to avoid any application of detergents, emollients and moisturizers on their backs as well as natural or artificial UV exposure.
Administration / exposure
- Type of coverage:
- occlusive
- Vehicle:
- other: distilled water
- Duration of exposure:
- 30 min, then 3 hours later again 30 min exposure, this treatment was performed on 4 consecutive days
- Doses:
- (0.01, 0.1, 1, 1.5 and 2% in pilot study)
1 % in this study - No. of animals per group:
- not applicable
- Control animals:
- no
- Remarks:
- not applicable, because humans
- Details on study design:
- The application areas were located on the clinically normal skin of the paravertebral mid back. According to the number of different treatment options (see below), 14 test areas with a space of 3 cm between each test chamber were marked with a permanent marker, resulting in 4 vertical rows.
The test areas were randomized among the volunteers in order to avoid an anatomical selection bias. Aliquots of 50 ml of the freshly prepared aqueous irritants were applied to each test area by an occlusive epicutaneous patch test system (Large Finn Chambers® on Scanpor®, 12 mm diameter with filter discs, Epitest Ltd., Hyrlä, Finland). Patches were removed after 30 min. The exposed areas were rinsed with 10 ml of tap water and carefully dried with a paper tissue without rubbing. After a 3-hour interval, a second exposure with one of the irritants, according to the different treatment options, was performed. Using this scheme of application, each test site was repeatedly treated for 4 days. - Details on in vitro test system (if applicable):
- not applicable
Results and discussion
- Signs and symptoms of toxicity:
- no effects
- Dermal irritation:
- no effects
Percutaneous absorption
- Remarks on result:
- other: The human volunteer study revealed no irritating effects of DMA on skin; possible processes at barrier are discussed in detail in this publication.
Any other information on results incl. tables
One day of treatment with detergents or biogenic amines did not result in irritation in any of the test sites.
All biogenic amines tested caused barrier disruption. The ranking order was TMA/TMA > DMA/DMA > AM/AM. The sequential irritation of the biogenic amines with SLS (AM/SLS, DMA/SLS and TMA/SLS) resulted in an increase in the barrier disruption starting for all three groups already on day 3, but this barrier disruption was less prominent than SLS/SLS alone.
The irritation was assessed measuring the redness.
The biogenic amines without the combination with SLS (AA/ AA, DMA/DMA, TMA/TMA) did not induce a significant irritation measured by Chromameter a* values. However, the combination with SLS depicted a significant increase in redness values for AM/SLS (only for day 5) and TMA/SLS (from day 3 on), while such an increase in the combination with DMA/SLS was not detectable
The biogenic amines in combination with SLS showed all an increase of the stratum corneum pH, e.g. AM/SLS on day 5, DMA/ SLS and TMA/SLS already on day 4.
The values assessed with the visual score were overall very low.
Applicant's summary and conclusion
- Conclusions:
- The highest irritative potential could be detected, as expected, by the double application of SLS/SLS followed by NaOH/SLS. Next we ranked TMA/SLS, followed by AA/SLS > AM/SLS > DMA/SLS.
Biogenic amines induce a permeability barrier disruption after 3 days of application in a tandem repeated irritation test model. This effect was paralleled with the onset of inflammatory signs and an increase in pH. The sequential application of SLS further increased these effects, and the initiation of both barrier disruption and inflammation occurred earlier. - Executive summary:
In the present study, we were able to show for the first time that biogenic amines cause disruption of the permeability barrier. However, the application of each of the three biogenic amines did not reveal a significant irritation or increase in SC pH. This dichotomy of usually related parameters of barrier disruption and induction of irritation might be based on the fact that the amines disturbed the intercellular barrier-lipid processing but did not induce a pH change and a subsequent increase in pH. Sequential application of SLS further enhanced the barrier disruption induced by the biogenic amines. The only exception was the irritation parameter Chroma a*, where no significant increase of redness could be observed. The TMA/SLS irritation and barrier disruption was slightly more prominent than those induced by AM/SLS and DMA/SLS, which can be explained by the higher concentration (1.5 vs. 1.0%). Since these results are detectable in all analysed parameters, we assume that the described features may be consistent properties of biogenic amines.
We assume that the mechanism by which the biogenic amines induce a barrier disruption and inflammatory reaction are different from that of SLS.
The contact with both classes of irritants however did not show overadditive effects.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.