Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-527-6 | CAS number: 107-86-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 3 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 30
- Modified dose descriptor starting point:
- NOAEC
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 3 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 30
- Modified dose descriptor starting point:
- NOAEC
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 3 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 30
- Dose descriptor:
- NOAEC
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 3 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 30
- Dose descriptor starting point:
- NOAEC
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 1 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 40
- Modified dose descriptor starting point:
- NOAEL
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 2 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 20
- Modified dose descriptor starting point:
- NOAEL
Workers - Hazard for the eyes
Additional information - workers
3-Methyl-2-butenal is a strongly irritating alpha-beta-unsaturated aldehyde. However, it appears to be less reactive and less cytotoxic than other alpha-beta-unsaturated aldehydes like acroleine (2-propenal) and crotonaldehyde (2-butenal) and to share some similariaties with aliphatic aldehydes.
The NOAEC in the frame of a rat 28-day inhalation study was 30 ppm (100 mg/m3). Acroleine showed irritation in humans as low as 0.1 ppm and increased cell proliferation rates in rat nose at 0.2 and 0.6 ppm. This difference appears to be explainable by the two methyl group substitutions at the double bound, which almost prevents a Michael reaction with proteins, DNA and other biological molecules. On the other hand, some alkylating properties via other mechanisms or after biotransformation cannot be totally excluded, also in the light of a positive bacterial mutation assay.
There is no information on carcinogenicity and on local genotoxicity at the port of entry. Hence, in the case of this aldehyde, it should be stated, that a time extrapolation factor is almost negligible. On the contrary, a time extrapolation factor of 6 is proposed. The allometric factor is 1 due to the inhalation route. Furthermore, an intraspecies variation factor of 5 is proposed. This leads to a chronic DNEL for workers of 1 ppm (3 mg/m3) which is regarded as equal for local and systemic effects and is also valid for acute exposure.
For systemic dermal exposure it is assumed that the systemic internal dose after resorption from the intestinal tract and skin is similar (which is a very approximate assessment). The LOAEL in the 18-week oral study (OECD 415) was the top dose (77 mg/kg b.w.); reduced water and food intake and glandular stomach mucosa erosion/ulceration were observed (NOAEL = 21 mg/kg b.w.). The allometric factor is reduced to 2 since local effects were observed. The NOAEL is also divided by a time extrapolation factor of 2 (for chronic exposure) and an intraspecies factor of 5, which results in a dermal DNEL of 1 mg/kg b.w. for chronic exposure and 2 mg/kg/day for short-term exposure.
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 1.5 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 60
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 3 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 30
- Modified dose descriptor starting point:
- NOAEC
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 1 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 40
- Dose descriptor:
- NOAEC
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 3 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 30
- Dose descriptor starting point:
- NOAEC
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.5 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 80
- Modified dose descriptor starting point:
- NOAEL
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 2 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 20
- Modified dose descriptor starting point:
- NOAEL
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 1 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 40
- Modified dose descriptor starting point:
- NOAEL
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 2 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 20
- Modified dose descriptor starting point:
- NOAEL
General Population - Hazard for the eyes
Additional information - General Population
For the general population, the chronic DNEL is divided by 2. The oral DNEL is taken from the drinking water study.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.