Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 300-212-6 | CAS number: 93924-19-7 Hollow ceramic spheres formed as a part of the ash in power stations burning pulverized coal. Composed primarily of the oxides of aluminium, iron and silicon and contain carbon dioxide and nitrogen within the sphere.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Ashes, including cenospheres, are inorganic complex compounds consisting of multitude of unknown and variable constituents (UVCB), and it is therefore technically not possible to determine an overall bioaccumulation for this substance. However, most of metals contained in ashes, which are of concern have been reviewed in literature.
End of 2008 4.1 million m^3 coal ash were released into the Emory, Tennessee and Clinch rivers due to an accident in the Tennessee Valley Authority (TVA) Kingston Fossil Plant. This unfortunate accidence provided an opportunity to directly study the impact of coal fly ash in a large lotic system since more than one rivers were affected. A variety of studies were initiated by multiple actors to assess ecological risks to different organisms. More than 24 metals (e.g. As, Cr, Hg, Se, Ag, Al, Ba, Be, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Tl, V, Zn) were investigated. Among multiple toxicological and ecotoxicological studies, bioaccumulation potential of metals associated to fly ash was investigated either as an endpoint solely or in combination with toxicological effects.
Bioavailability and consequently bioaccumulation of ash-related metals is complex and dependent on multiple factors like pH, redox potential, geochemical interactions etc. The site monitoring and lab investigations of the presented publications and monitoring data for aquatic, sediment and terrestric compartments showed in a weight of evidence approach that bioaccumulation of ash associated metals is generally very low and not of concern for any compartment. In only very few cases (e.g. for As and Se) concentrations in organisms exceeded proposed thresholds (e.g. from US EPA, FDA) for the protection of the environment and humans but was observed for only very high ash concentration in the river and under the extreme conditions caused by the spill.
Furthermore, cenospheres are not bioavailable for aquatic organisms due to its physical chemicals properties as inert, hollow balls of sand-like material; therefore a bioaccumulation potential can be excluded.
Additionally, the Tennessee Valley Authority (TVA) initiated multi-phase laboratory toxicity studies in March 2009 to evaluate potential risks to biota from exposure to fly ash including cenospheres from the ash release to the river and subsequent dredging. Results from a „A Multi-phased Toxicity Study for Evaluating Potential Risks of Kingston Fossil Plant Fly Ash Exposure to Benthic and Aquatic Biota“ ash composite samples indicated no appreciable bioaccumulation of Ash including cenospheres (R. Sherrard; Poster, SETAC, 2009).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.