Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Bioaccumulation: aquatic / sediment

Currently viewing:

Administrative data

Link to relevant study record(s)

Description of key information

Key value for chemical safety assessment

Additional information

Experimental bioaccumulation data are not available for 2-octyldodecyl myristate (CAS 22766-83-2). The high log Kow (> 10) as an intrinsic chemical property of the substance indicates a potential for bioaccumulation. However, the information gathered on environmental behaviour and metabolism, in combination with QSAR-estimated values, provide enough evidence (in accordance to the Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2), to cover the data requirements of Regulation (EC) No 1907/2006, Annex IX to state that the substance is likely to show negligible bioaccumulation potential.

Environmental behaviour

Due to ready biodegradability and high potential for adsorption, the substance can be effectively removed in conventional sewage treatment plants (STPs) by biodegradation and by sorption to biomass. The low water solubility (17.7 µg/L, at 19°C, pH 6.3) and high estimated log Kow indicate that the substance is highly lipophilic. If released into the aquatic environment, the substance undergoes extensive biodegradation and sorption on organic matter. Thus, the bioavailability in the water column is reduced rapidly. The relevant route of uptake of the substance in aquatic organisms is expected to be predominantly by ingestion of particle bound substance. 

Metabolism of aliphatic esters

In general, alkyl esters are readily hydrolysed in the gastrointestinal tract, blood and liver to the corresponding alcohol and fatty acid by the ubiquitous carboxylesterases. There are indications that the hydrolysis rate in the intestine catalysed by pancreatic lipase is lower for alkyl esters than for triglycerides, which are the natural substrates of this enzyme. The hydrolysis rate of linear esters increases with increasing chain length of either the alcohol or acid. Branching reduces the ester hydrolysis rate, compared with linear esters (Mattson and Volpenhein, 1969, 1972; WHO, 1999). For additional information on metabolism of the substance please refer to IUCLID chapter 7.1.

Should the substance be taken up by fish during the process of digestion and absorption in the intestinal tissue, aliphatic esters like 2-octyldodecyl myristate are expected to be initially metabolized via enzymatic hydrolysis to the corresponding free fatty acid (here: myristic acid) and the free fatty alcohols (here: 2-octyldodecanol). The hydrolysis is catalysed by classes of enzymes known as carboxylesterases or esterases (Heymann, 1980). The most important of which are the B-esterases in the hepatocytes of mammals (Heymann, 1980; Anders, 1989). Carboxylesterase activity has been noted in a wide variety of tissues in invertebrates as well as in fish (Leinweber, 1987; Soldano et al., 1992; Barron et al., 1999, Wheelock et al., 2008). The catalytic activity of this enzyme family leads to a rapid biotransformation/metabolism of xenobiotics which reduces the bioaccumulation or bioconcentration potential (Lech & Bend, 1980). It is known for esters that they are readily susceptible to metabolism in fish (Barron et al., 1999) and literature data have clearly shown that esters do not readily bioaccumulate in fish (Rodger & Stalling, 1972; Murphy & Lutenske, 1990; Barron et al., 1990). In fish species, this might be caused by the wide distribution of carboxylesterase, high tissue content, rapid substrate turnover and limited substrate specificity (Lech & Melancon, 1980; Heymann, 1980). The metabolism of the enzymatic hydrolysis products is presented in the following chapter.

Metabolism of enzymatic hydrolysis products

Fatty alcohols

2-octyldodecanol is the hydrolysis product from the enzymatic reaction of 2-octyldodecyl myristate catalysed by carboxylesterases. The metabolism of alcohols is well known. The free alcohols can either be esterified to form wax esters which are similar to triglycerides or they can be metabolized to fatty acids in a two-step enzymatic process by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) using NAD+ as coenzyme as shown in the fish gourami (Trichogaster cosby) (Sand et al., 1973). The responsible enzymes ADH and ALDH are present in a large number of animals, plants and microorganisms (Sund & Theorell, 1963; Yoshida et al., 1997). They were found among others in the zebrafish (Reimers et al., 2004; Lassen et al., 2005), carp and rainbow trout (Nilsson, 1988; Nilsson, 1990).

The metabolism of alcohols was also investigated in the zebrafish Danio rerio, which is a standard organism in aquatic ecotoxicology. Two cDNAs encoding zebrafish ADHs were isolated and characterized. A specific metabolic activity was shown in in-vitro assays with various alcohol components ranging from C4 to C8. The corresponding aldehyde can be further oxidized to the fatty acid catalysed by an ALDH. Among the ALDHs the ALDH2, located in the mitochondria is the most efficient. The ALDH2 cDNA of the zebrafish was cloned and a similarity of 75% to mammalian ALDH2 enzymes was found. Moreover, ALDH2 from zebra fish exhibits a similar catalytic activity for the oxidation of acetaldehyde to acetic acid compared to the human ALDH2 protein (Reimers at al., 2004). The same metabolic pathway was shown for longer chain alcohols like stearyl- and oleyl alcohol which were enzymatically converted to its corresponding acid, in the intestines (Calbert et al., 1951; Sand et al., 1973; Sieber et al., 1974). Branched alcohols like 2-hexyldecanol or 2-octyldodecanol show a high degree of similarity in biotransformation compared to the linear alcohols. They will be oxidized to the corresponding carboxylic acid followed by the ß-oxidation as well. A presence of a side chain does not terminate the ß-oxidation process (OECD, 2006).

The influence of biotransformation on bioaccumulation of alcohols was confirmed in GLP studies with the rainbow trout (according to OECD 305) with commercial branched alcohols with chain lengths of C10, C12 and C13 as reported in de Wolf & Parkerton (1999). This study resulted in an experimental BCF of 16, 29 and 30, respectively for the three alcohols tested. The 2-fold increase of BCF for C12 and C13 alcohol was explained with a possible saturation of the enzyme system and thus leading to a decreased elimination.

Fatty acids

The metabolism of fatty acids in mammals is well known and has been investigated intensively in the past (Stryer, 1994). The free fatty acids can either be stored as triglycerides or oxidized via mitochondrial ß-oxidation removing C2-units to provide energy in the form of ATP (Masoro, 1977). Acetyl-CoA, the product of the ß-oxidation, can further be oxidized in the tricarboxylic acid cycle to produce energy in the form of ATP. As fatty acids are naturally stored as triglycerides in fat tissue and re-mobilized for energy production it can be concluded that even if they bioaccumulate, bioaccumulation will not pose a risk to living organisms. Fatty acids (typically C14 to C24 chain lengths) are also a major component of biological membranes as part of the phospholipid bilayer and therefore part of an essential biological component for the integrity of cells in every living organism (Stryer, 1994). Saturated fatty acids (SFA; C12 - C24) as well as mono-unsaturated (MUFA; C14 - C24) and poly-unsaturated fatty acids (PUFA; C18 - C22) were naturally found in muscle tissue of the rainbow trout (Danabas, 2011) and in the liver (SFA: C14 - C20; MUFA: C16 - C20; PUFA: C18 - C22) of the rainbow trout (Dernekbasi, 2012).

Data from QSAR calculation

Additional information on bioaccumulation could be gathered by (Q)SAR calculations. Two different models were applied, the BCF read across model which is part of the VEGA tool and BCFBAF v3.01 as part of EPISuite v4.11.
The estimated BCF values for 2-octyldodecyl myristate indicate negligible bioaccumulation in organisms. The substance is within the applicability domain of the model when applying VEGA BCF read across model. Thus, the model is reliable. The BCF values indicated clearly a low potential for bioaccumulation with a BCF of 6.92 L/kg whole body ww.
Using the second (Q)SAR model BCF and BAF values of 0.89 and 1.32 L/kg, respectively were obtained (BCFBAF v3.01, Arnot-Gobas estimate, including biotransformation, upper trophic). The regression based model resulted in a BCF of 3.16 L/kg. Even though the substance is outside the applicability domain of the EPISuite model the (Q)SAR calculations can be used as supporting indication that the potential of bioaccumulation is low. The model training set is only consisting of substances with log Kow values of 0.31 - 8.70. But it supports the tendency that substances with high log Kow values (> 10) have a lower potential for bioconcentration as summarized in the ECHA Guidance R.11 and they are not expected to meet the B/vB criterion (ECHA, 2014).


The biochemical process metabolizing aliphatic esters is ubiquitous in the animal kingdom. Based on the enzymatic hydrolysis of aliphatic esters and the subsequent metabolism of the corresponding carboxylic acid and alcohol, it can be concluded that the high log Kow, which indicates a potential for bioaccumulation, overestimates the true bioaccumulation potential of 2-octyldodecyl myristate since it does not reflect the metabolism of substances in living organisms. BCF/BAF values estimated with the BCF read across model (VEGA) and BCFBAF v3.01 program also indicate that the substance will not be bioaccumulative (all well below 2000 L/kg). Taking all these information into account, it can be concluded that the bioaccumulation potential of the substance is low.

A detailed reference list is provided in the technical dossier (see IUCLID, section 13) and within the CSR.