Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 219-536-3 | CAS number: 2457-02-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
No genetic toxicity study with strontium bis(2-ethylhexanoate) is available, thus the genetic toxicity will be addressed with existing data on the individual moieties strontium and 2-ethylhexanoic acid.
Strontium bis(2-ethylhexanoate) is not expected to be genotoxic, since the two moieties strontium and 2-ethylhexanoic acid have not shown gene mutation potential in bacteria and mammalian cells as well as in vivo cytogenicity.
Additional information
Read-across approach
Selected endpoints for the human health hazard assessment are addressed by read-across, using a combination of data on the metal cation and the organic acid anion. This way forward is acceptable, since metal carboxylates are shown to dissociate to the organic anion and the metal cation upon dissolution in aqueous media. No indications of complexation or masking of the metal ion through the organic acid were apparent during the water solubility and dissociation tests (please refer to the water solubility and dissociation in sections 4.8 and 4.21 of IUCLID). Once the individual transformation products of the metal carboxylate become bioavailable (i.e. in the acidic environment in the gastric passage or after phagocytosis by pulmonary macrophages), the “overall” toxicity of the dissociated metal carboxylate can be described by a combination of the toxicity of these transformation products, i.e. the metal cation and carboxylate anion according to an additivity approach.
Strontium bis(2-ethylhexanoate) is the strontium salt of 2-ethylhexanoic acid, which readily dissociates to the corresponding divalent strontium cation and 2-ethylhexanoic acid anions. The strontium cation and the 2-ethylhexanoic acid anion are considered to represent the overall toxicity of strontium bis(2-ethylhexaate) in a manner proportionate to the free acid and the metal (represented by one of its readily soluble salts).
A detailed justification for the read-across approach is added as a separate document in section 13 of IUCLID.
Genetic toxicity
No genetic toxicity study with strontium bis(2-ethylhexanoate) is available, thus the genetic toxicity will be addressed with existing data on the individual moieties strontium and 2-ethylhexanoic acid as detailed below.
Strontium
The GLP conform bacterial reverse mutation assay performed according to OECD 471, the GLP conform in vitro mammalian cell micronucleus test performed according to OECD 487 and the GLP conform in vitro mammalian cell gene mutation assay performed according to OECD 476 showed that the test item strontium neodecanoate did not induce gene mutations and is not clastogenic and not aneugenic.
Thus, according to Regulation (EC) No 1272/2008 as amended, the test substance strontium neodecanoate is not considered to be genotoxic, and hence no classification or labelling is required. Because of the high solubility of strontium neodecanoate and its complete dissociation in aqueous media, these conclusions are also taken forward for the strontium ion.
2-ethylhexanoic acid
in vitro
2-ethylhexanoic acid was negative in the bacterial Ames test with S. typhimurium strains TA 98, TA 100, TA 1535 and TA 1537 and E. coli WP2 uvr A (Jung et al., 1982; Zeiger et al., 1988; Warren et al., 1982), as well as in a HPRT locus assay with mammalian CHO cells (Schulz et al., 2007). In cultured human lymphocytes, 2-ethylhexanoic acid induced a minimal increase in frequency of sister-chromatid exchanges (below 1.5 fold increase at concentrations of the test substance of 0.63 to 2.5 mM; Sipi et al., 1992), which is not considered significant.
in vivo
In an in vivo micronucleus assay with mice, 2-ethylhexanoic acid was administered by gavage up to the maximum tolerated oral dose of 1600 mg/kg/day. No bone marrow toxicity was observed, nor did the test substance induce any bone marrow micronuclei (Holstrom et al., 1994).
Strontium bis(2-ethylhexanoate)
Strontium bis(2-ethylhexanoate) is not expected to be genotoxic, since the two moieties strontium and 2-ethylhexanoic acid have not shown gene mutation potential in bacteria and mammalian cells as well as in vivo cytogenicity. Further testing is not required.
For further information on the toxicity of the individual constituents, please refer to the relevant sections in the IUCLID and CSR.
Justification for classification or non-classification
Strontium bis(2-ethylhexanoate) is not expected to be genotoxic, since the two moieties strontium and 2-ethylhexanoic acid have not shown gene mutation potential in bacteria and mammalian cells as well as in vivo cytogenicity.
According to the criteria of REGULATION (EC) No 1272/2008 and its subsequent adaptions, strontium bis(2-ethylhexanoate) does not have to be classified and has no obligatory labelling requirement for germ cell mutagenicity.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.