Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 479-930-8 | CAS number: 613222-52-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
Hydrolysis
To assess the hydrolysis behaviour of SIKA Hardener LH a read-across approach was applied using data from the structural analogue substance SIKA Hardener LI, with both substances sharing comparable hydrolytic properties.
SIKA Hardener LI was assessed in an abiotic degradation study according to EU-method C.7 and OECD guideline no. 111. Hydrolysis of SIKA Hardener LI was most rapid in acidic environment (pH 4) and high temperature compared to basic environment (pH 9) and low temperature. At pH 7 and 12 °C (285.2 K) the degradation half-life was 0.19 days and rate constant 3.56 days (85.44 h).
Biodegradation
In a biodegradation study (MITI, 2011), the test substance Sika Hardener LH was completely hydrolyzed to 2,2-dimethyl-3-oxopropyl dodecanoate and hexamethylenediamine. These converted products were biodegraded. The percentage (average) of biodegradation by BOD was 91 % after 28 days. Further, the test substance is considered to be readily biodegradable.
Adsorption/Desorption
Due to the immediate hydrolysis of the test item upon contact with water, experimental determination of the adsorption coefficient was technically not feasible. Instead, experimental determination of the adsorption coefficient was replaced by a theoretical based evaluation. The log Koc value of the test item was calculated to be = 9.535 using the MCI method (KOCWIN v2.00).Based on this result, adsorption of the test item to solid soil phase is expected.
Bioaccumulation
The study does not need to be conducted as from experience in handling and use it is very unlikely that direct and indirect exposure of the aquatic compartment occurs, as the substance rapidly hydrolysis in contact with water. In addition, based on the very high predicted log Pow of over 10 (14.22 as estimated by EPIWIN), the substance has a very low potential to pass biological membranes and thus, will not be easily bioavailable.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
