Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 265-198-5 | CAS number: 64742-94-5 A complex combination of hydrocarbons obtained from distillation of aromatic streams. It consists predominantly of aromatic hydrocarbons having carbon numbers predominantly in the range of C9 through C16 and boiling in the range of approximately 165°C to 290°C (330°F to 554°F).
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 2.31 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 6
- Modified dose descriptor starting point:
- NOAEC
- Value:
- 27.6 mg/m³
- Explanation for the modification of the dose descriptor starting point:
- not applicable, based on 90 day subchronic inhalation study in mouse and rat
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 2
- Justification:
- Default for subchronic to chronic
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- Allometric scaling is not necessary for the inhalation route if derived from an inhalation study (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 3
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However the population exposed in the workplace is highly homogeneous and the health of the work force is typically good (healthy worker effect) while metabolic differences due to genetic polymorphisms do not automatically require an increased assessment factor since compensating mechanisms (including alternative pathways of elimination) are often present (ECETOC, 2003, 2010). Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 3 (i.e. the 90th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within workers.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 2.31 mg/m³
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 6
- Dose descriptor:
- NOAEC
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 2
- Justification:
- default for subchronic to chronic
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary for the inhalation route if derived from an inhalation study (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 3
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However the population exposed in the workplace is highly homogeneous and the health of the work force is typically good (healthy worker effect) while metabolic differences due to genetic polymorphisms do not automatically require an increased assessment factor since compensating mechanisms (including alternative pathways of elimination) are often present (ECETOC, 2003, 2010). Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 3 (i.e. the 90th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within workers.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 160.23 mg/m³
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 3
- Dose descriptor starting point:
- NOAEC
- AF for dose response relationship:
- 1
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary for the inhalation route if derived from an inhalation study (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 3
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However the population exposed in the workplace is highly homogeneous and the health of the work force is typically good (healthy worker effect) while metabolic differences due to genetic polymorphisms do not automatically require an increased assessment factor since compensating mechanisms (including alternative pathways of elimination) are often present (ECETOC, 2003, 2010). Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 3 (i.e. the 90th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within workers.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.95 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 6
- Modified dose descriptor starting point:
- NOAEL
- Value:
- 5.69 mg/kg bw/day
- Explanation for the modification of the dose descriptor starting point:
- no study by dermal route available, data derived from a well-conducted subchronic 90 day inhalation study in mouse and rat
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 2
- Justification:
- default for subchronic to chronic
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary since the DNEL is derived from the 90 day mouse inhalation study NOAEC (27.6 mg/m3) (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 3
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However the population exposed in the workplace is highly homogeneous and the health of the work force is typically good (healthy worker effect) while metabolic differences due to genetic polymorphisms do not automatically require an increased assessment factor since compensating mechanisms (including alternative pathways of elimination) are often present (ECETOC, 2003, 2010). Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 3 (i.e. the 90th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within workers.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- low hazard (no threshold derived)
Additional information - workers
For justifications see CSR Section 5.11.2
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.69 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 10
- Modified dose descriptor starting point:
- NOAEC
- Value:
- 27.6 mg/m³
- Explanation for the modification of the dose descriptor starting point:
- not applicable, based on 90 day subchronic inhalation study in mouse and rat
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 2
- Justification:
- default for subchronic to chronic
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary for the inhalation route if derived from an inhalation study (R8)
- AF for other interspecies differences:
- 1
- Justification:
- an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.69 mg/m³
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 10
- Dose descriptor:
- NOAEC
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 2
- Justification:
- default for subchronic to chronic
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary for the inhalation route if derived from an inhalation study (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 143.5 mg/m³
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 10
- Dose descriptor starting point:
- NOAEC
- AF for dose response relationship:
- 1
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary for the inhalation route if derived from an inhalation study (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.28 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 10
- Modified dose descriptor starting point:
- NOAEL
- Value:
- 2.83 mg/kg bw/day
- Explanation for the modification of the dose descriptor starting point:
- data derived from well-conducted subchronic 90 day mouse inhl study
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 2
- Justification:
- default for subchronic to chronic
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- allometric scaling is not necessary since the DNEL is derived from the 90 day mouse inhalation study NOAEC (27.6 mg/m3) (R8)
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.03 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- Oral
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 120
- Modified dose descriptor starting point:
- NOAEL
- Value:
- 4 mg/kg bw/day
- Explanation for the modification of the dose descriptor starting point:
- not applicable
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 6
- AF for interspecies differences (allometric scaling):
- 4
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 25.6 mg/kg bw/day
- Most sensitive endpoint:
- acute toxicity
- Route of original study:
- Oral
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 20
- Modified dose descriptor starting point:
- other: LD50
- Value:
- 512 mg/kg bw/day
- Explanation for the modification of the dose descriptor starting point:
- not applicable
- AF for dose response relationship:
- 1
- AF for interspecies differences (allometric scaling):
- 4
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for 3a,4,7,7a-tetrahydro-4,7-methanoindene, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to 3a,4,7,7a-tetrahydro-4,7-methanoindene in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- low hazard (no threshold derived)
Additional information - General Population
For justifications see CSR Section 5.11.2
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
