Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 293-048-9 | CAS number: 91051-00-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Environmental fate and pathway studies with substance Fatty acids, C8-10, zinc salts are not available. In the assessment of substance Fatty acids, C8-10, zinc salts, read-across to analogue substances and/or the assessment entities soluble zinc substances and fatty acids is applied since the ions of substance Fatty acids, C8-10, zinc salts determine its fate and toxicity in the environment. For details on the environmental fate and pathways of the individual moieties, please refer to the respective assessment entities. In brief, metal partition coefficients for distribution between different fractions e.g. the water (dissolved fraction, fraction bound to suspended matter), soil (fraction bound or complexed to the soil particles, fraction in the soil pore water,...) are the only parameter relevant for the fate of zinc in the environment and biotic degradation is the only fate process expected to substantially influence the fate of fatty acids in the environment. However, > 70 % of zinc is removed from the water column under reference conditions for EU regional waters (EUSES) (see section 5.6.: "removal from the water column") and the fatty acid moiety is rapidly biodegraded. Thus, for both moieties, bioconcentration/bioaccumulation is considered not relevant.
Additional information
Read across statement:
Metal carboxylates are substances consisting of a metal cation and a carboxylic acid anion. Based on the water solubility of fatty acids, C8-10, zinc salts (338 mg/L at 20°C), a complete dissociation of fatty acids, C8-10, zinc salts resulting in zinc and fatty acids of an alkyl chain length from C8 to C10 may be assumed under environmental conditions upon contact with water. The respective dissociation is in principle reversible, and the ratio of the salt /dissociated ions is dependent on the metal-ligand dissociation constant of the salt, the composition of the solution and its pH.
A metal-ligand complexation constant of fatty acids, C8-10, zinc salts could not be identified. Data for zinc appear to be generally limited. However, zinc cations tend to form complexes with ionic character as a result of their low electronegativity. Further, the ionic bonding of zinc is typically described as resulting from electrostatic attractive forces between opposite charges, which increase with decreasing separation distance between ions.
Based on an analysis by Carbonaro et al. (2011) of monodentate binding of zinc to negatively-charged oxygen donor atoms, including carboxylic functional groups, monodentate ligands such as fatty acids are not expected to bind strongly with zinc. Accordingly, protons will always out-compete zinc ions for complexation of monodentate ligands given equal activities of free zinc and hydrogen ions. The metal-ligand formation constants (log KML) of zinc with other carboxylic acids, i.e. acetic and benzoic acid, ranging from 0.56 to 1.59 (Bunting & Thong, 1969), further point to a low strength of the monodentate bond between carboxyl groups and zinc.
The analysis by Carbonaro & Di Toro (2007) suggests that the following equation models monodentate binding to negatively-charged oxygen donor atoms of carboxylic functional groups:
log KML= αO* log KHL+ βO; where
KML is the metal-ligand formation constant, KHL is the corresponding proton–ligand formation constant, and αO and βO are termed the slope and intercept, respectively. Applying the equation and parameters derived by Carbonaro & Di Toro (2007) and the pKa of fatty acids (C8-10)* of 5.07 results in:
log KML= 0.301 * 5.07 + 0.015
log KML= 1.564(estimated zinc-C8-10 fatty acid formation constant).
*Calculated as the mean pKa of octanoic acid (C8) and decanoic acid (C10)
Thus, it may reasonably be assumed that based on the estimated zinc-C8-10 fatty acid formation constant, the respective behaviour of the dissociated zinc cations and fatty acid anions in the environment determine the fate of Fatty acids, C8-10, zinc salts upon dissolution with regard to (bio)degradation, bioaccumulation, partitioning resulting in a different relative distribution in environmental compartments (water, air, sediment and soil) and subsequently its ecotoxicological potential.
In order to evaluate the environmental fate of the Fatty acids, C8-10, zinc salts, information on the assessment entities zinc cations and representative fatty acid anions were considered. For a documentation and justification of that approach, please refer to the information given in the respective assessment entities and the separate document attached to section 13, namely Read Across Assessment Report for Fatty acids, C8-10, zinc salts.
Reference:
Carbonaro RF & Di Toro DM (2007) Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms. Geochimica et Cosmochimica Acta 71: 3958–3968.
Bunting, J. W., & Thong, K. M. (1970). Stability constants for some 1: 1 metal–carboxylate complexes. Canadian Journal of Chemistry, 48(11), 1654-1656.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.