Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 242-670-9 | CAS number: 18917-91-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Bioaccumulation: aquatic / sediment
Administrative data
- Endpoint:
- bioaccumulation: aquatic / sediment
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: By Canadian authorities peer-reviewed data
Data source
Reference
- Reference Type:
- review article or handbook
- Title:
- Environment Canada Priority Substance List Assessment Report, Follow-up to the State of Science Report, 2000 Aluminium Salts (Final Content)
- Author:
- Environment Canada
- Year:
- 2 010
- Bibliographic source:
- http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=491F0099-1 and http://www.ec.gc.ca/lcpe-cepa/documents/substances/sa-as/final/al_salts-eng.pdf
Materials and methods
- Principles of method if other than guideline:
- Literature review, no further information on methods available
- GLP compliance:
- not specified
Test material
- Reference substance name:
- 14903-36-7 (Aluminium (3+))
- IUPAC Name:
- 14903-36-7 (Aluminium (3+))
- Test material form:
- not specified
- Details on test material:
- - Name of test material (as cited in study report): Aluminium
Constituent 1
- Radiolabelling:
- not specified
Test solutions
- Vehicle:
- not specified
Test organisms
- Test organisms (species):
- other:
Study design
- Test type:
- not specified
- Water / sediment media type:
- not specified
Results and discussion
Bioaccumulation factoropen allclose all
- Type:
- BCF
- Value:
- >= 0 - <= 10 000 dimensionless
- Remarks on result:
- other: Daphnia magna
- Type:
- BCF
- Value:
- >= 400 - <= 1 365 dimensionless
- Remarks on result:
- other: fish; accumulation in and on gill, transfer into the body slow or negligible
Applicant's summary and conclusion
- Validity criteria fulfilled:
- not applicable
- Conclusions:
- The bioaccumulation of Aluminium depends on pH: the bioconcentration factor (BCF) for Daphnia magna varied from 10,000 at pH 6.5 down to 0 at pH 4.5. BCFs for fishare reported to range from 400 to 1,365. The authors reported that fish accumulate Aluminium in and on the gill. It has been suggested that the rate of transfer of Aluminium into the body of fish is either slow or negligible under natural environmental conditions.
- Executive summary:
The bioaccumulation potential of Aluminium in aquatic organisms has been reviewed by Environment Canada (2010):
“All biota will naturally accumulate metals to some degree without deleterious effect and as some metals are essential elements, bioaccumulation does not necessarily indicate the potential for adverse effects (McGreer et al. 2003). While metal bioaccumulation is homeostatically regulated for metals essential to biological function (Adams et al. 2000), non-essential metals may also be regulated to some degree as these homeostatic mechanisms are not metal-specific (ICMM 2007). Thus, interpretation of the toxicological significance of bioaccumulation data for metals such as aluminum is complex.”
Bioaccumulation of Aluminium in algae and aquatic invertebrates depends on pH. According to Environment Canada (2010) “the comparison of assays performed at the same concentration of aluminum but at different pH values showed that aluminum accumulation was suppressed at low pH (Parent and Campbell 1994).”
“Aquatic invertebrates can also accumulate substantial quantities of aluminum, yet there is evidence that most of the metal is adsorbed to external surfaces and is not internalized (Havas 1985; Frick and Hermann 1990). Using the results of Havas (1985), the bioconcentration factor (BCF) for Daphnia magna varied from 10,000 at pH 6.5 down to 0 at pH 4.5.”
“BCFs for fish were calculated to range from 400 to 1,365 based on results presented in Roy (1999a). Numerous field and laboratory studies have demonstrated that fish accumulate aluminum in and on the gill. It has been suggested that the rate of transfer of aluminum into the body of fish is either slow or negligible under natural environmental conditions (Spry and Wiener 1991). The initial uptake of aluminum by fish essentially takes place not on the gill surface but mainly on the gill mucous layer (Wilkinson and Campbell 1993). Fish may rapidly eliminate mucus and the bound aluminum following the exposure episode. For example, Wilkinson and Campbell (1993) and Lacroix et al. (1993) found that depuration of aluminum from the gills of Atlantic salmon (Salmo salar) was extremely rapid once fish were transferred into clean water. The authors suggested that the rapid loss is due to expulsion of aluminium bound to mucus.”
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
