Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Partition coefficient

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Justification for type of information:
QSAR prediction
Qualifier:
according to guideline
Guideline:
other: REACH guidance on QSARs R.6, 2008
Qualifier:
according to guideline
Guideline:
other: REACH Chapter R.7A - Endpoint specific guidance, 2008. Table R.7.1-24
Principles of method if other than guideline:
Partition coefifcients were estimated using the validated EPISuite modelling tool (US EPA). The method used is KOWWIN v 1.68 which is an atom fragment contribution method.
GLP compliance:
no
Remarks:
not applicable
Type of method:
other: (Q)SAR Tool:KOWWIN v 1.68
Partition coefficient type:
octanol-water
Specific details on test material used for the study:
For Smiles notation and C-number please see under Any other information on materials and methods incl. tables
Type:
log Pow
Partition coefficient:
> 2.05 - < 13.25
Remarks on result:
other: No pH and temperature value was reported
Details on results:
Validity of model
1. Defined endpoint: log Kow
2. Unamibous algorithm: Linear regression QSAR log P = Σ(fini ) + Σ(cjnj ) + 0.229 in which fi = coefficient for fragment/atom, cj =
coefficient for correction factor, ni,nj = numbers of fragment/atoms/correction factors
3. Applicability domain: There is no real applicability domain defined, but the applicability is expected to be better if the molecular weight of
the substance falls within the ranges of molecular weights of the training set (18.02 - 719.92) and the validation set (27.03-991.15). The
number of fragments does not exceed the maximum number of fragments in the training set or the validation set.
4. Statistical characteristics: training set: N = 2447, coefficient of determination R2=0.982, validation set: N = 10946, coefficient of
determination R2=0.943
5. Mechanistic Interpretation: the structure is divided into fragments (atom or larger functional groups) and coefficient values of each
fragment or group are summed together to yield the log P estimate.
Adequacy of the prediction: the naphtehnic acids fall within the applicability domain described above (molecular weight = 116.16 -432.74 and the
number of fragments does not exceed the number in the training and test set) and, therefore, the predicted value can be considered reliable
taking into account that the standard deviation error of prediction is 0.478 for logKow

Due to the complex composition of naphthenic acid, unequivocal determination of the log Kow of naphthenic acid mixtures cannot be made. To gain an understanding of the partitioning potential, partition coefficients are calculated for a selection of different possible structures. The selection is made based on the substance identification and is therefore a good representation of the composition of naphthenic acids.

Tabulated values for various naphthenic acid molecules are:

 

mber

Ring

Branch

SMILES

Mw

Log Kow

C6

-

-

C(=O)(O)CCCCC

116,16

2,0512

C7

-

-

C(=O)(O)CCCCCC

130,19

2,5423

C8

-

-

C(=O)(O)CCCCCCC

144,22

3,0334

C8

1 pentane

-

C(=O)(O)CCC1CCCC1

142,2

2,8475

C9

-

methyl

C(=O)(O)CCCC(C)CCC

158,24

3,451

C10

-

ethyl

C(=O)(O)CCCC(CCC)CC

172,27

3,9421

C10

1 pentane

-

C(=O)(O)CCC1C(CC)CCC1

170,25

3,7562

C11

1 pentane

-

C(=O)(O)CCC1C(CCC)CCC1

184,28

4,2473

C12

1 hexane

-

C(=O)(O)CCC1C(CCC)CCCC1

198,31

4,7384

C12

1 pentane

-

C(=O)(O)CCC1C(CCCC)CCC1

198,31

4,7384
C12 2 pentanes fused - C(=O)(O)CCC1C2C(C)CCC2CC1 196,29 3,7948
C13 2 pentanes - C(=O)(O)CCC1C(C2CCCC2)CCC1 210,32 5,0436
C13 pentane hexane fused   O=C(O)CCC2CCCC1CCC(C)C12 210,32 4,2859
C14 1 hexane - O=C(O)C1C(CCCCCCCC)CCC1 226,36 5,7206
C14 2 pentanes - C(=O)(O)CCC1CC(C2C(C)CCC2)CC1 224,35 5,4612
C14 2 pentanes fused - C(=O)(O)CCCC1C2C(CC)CCC2CC1 224,35 4,777
C15 - propyl C(=O)(O)CCCCC(CCCCCC)CCC 242,41 6,3976
C15 1 pentane ethyl C(=O)(O)CCC1C(CC(CCC)CC)CCC1 240,39 6,1382
C15 2 pentanes - C(=O)(O)CCC1C(CC2CC(C)CC2)CCC1 238,37 5,9523
C15 2 hexanes fused   O=C(O)CCC1CCC2CCCC(CC)C2C1 238,37 5,2681
C15 3 pentanes fused - C(=O)(O)CCCC1C2C3C(CC2CC1)CCC3C 250,38 4,8156
C16 1 pentane - C(=O)(O)CCC1C(CCCCCCCC)CCC1 254,42 6,7028
C16 2 pentanes - C(=O)(O)CCC1CC(C2C(CCC)CCC2)CC1 252,4 6,4434
C16 2 hexane - C(=O)(O)C1C(CCC2C(C)CCCC2)CCCC1 252,4 6,4434
C16 3 pentanes of which 2 fused - C(=O)(O)CC1C2C(CC3CCCC3)CCC2CC1 250,38 5,5733
C17 1 pentane - C(=O)(O)CCC1C(CCCCCCCCC)CCC1 268,44 7,1939
C17 4 pentanes fused - C12(C3C(CC(=O)O)CCC3CC1)C1C(CCC1)CC2 262,4 5,1567
C18 1 hexane propyl C(=O)(O)CCC1C(CC(CCCC)CCC)CCCC1 282,47 7,6115
C18 3 pentanes of which 2 fused - C(=O)(O)CCCCC1C2C(C3CCCC3)CCC2CC1 278,44 6,5555
C19 2 pentanes fused ethyl C(=O)(O)CCCCC1C2C(C(CCC)CC)CCC2CC1 294,48 7,159
C19 2 pentane propyl C(=O)(O)CC1CC(CC(CCC2CCCC2)CCC)CC1 294,48 7,9167
C25 2 hexane propyl C(=O)(O)CCCC(CCC1C(CCC2C(C)CCCC2)CCCC1)CCC 378,64 10,7898
C30 2 hexane propyl C(=O)(O)CCC(CCCC1C(CCC2C(CCCCCC)CCCC2)CCCC1)CCC 448,78 13,2453
C30 3 hexane - C(=O)(O)CCCCCCC1C(CCC2C(CCCC3CCCCC3)CCCC2)CCCC1 446,76 13,1329
C30 3 hexanes fused ethyl-ethyl O=C(O)CCCCC(CC)CCC1CC2CCCC3CC(CCC(CC)CC)CC(C1)C23 446,76 12,2282
C30 2 hexanes fused 1 not propyl O=C(O)CCCC(CCC)CCCC1CCC2CC(CCC2C1)CC3CCCC(C)C3 432,74 11,8106
C-number Ring Branch SMILES Mw Log Kow
C6 - - C(=O)(O)CCCCC 116,16 2,0512
C7 - - C(=O)(O)CCCCCC 130,19 2,5423
C8 - - C(=O)(O)CCCCCCC 144,22 3,0334
C8 1 pentane - C(=O)(O)CCC1CCCC1 142,2 2,8475
C9 - methyl C(=O)(O)CCCC(C)CCC 158,24 3,451
C10 - ethyl C(=O)(O)CCCC(CCC)CC 172,27 3,9421
C10 1 pentane - C(=O)(O)CCC1C(CC)CCC1 170,25 3,7562
C11 1 pentane - C(=O)(O)CCC1C(CCC)CCC1 184,28 4,2473
C12 1 hexane - C(=O)(O)CCC1C(CCC)CCCC1 198,31 4,7384
C12 1 pentane - C(=O)(O)CCC1C(CCCC)CCC1 198,31 4,7384
C12 2 pentanes fused - C(=O)(O)CCC1C2C(C)CCC2CC1 196,29 3,7948
C13 2 pentanes - C(=O)(O)CCC1C(C2CCCC2)CCC1 210,32 5,0436
C13 pentane hexane fused   O=C(O)CCC2CCCC1CCC(C)C12 210,32 4,2859
C14 1 hexane - O=C(O)C1C(CCCCCCCC)CCC1 226,36 5,7206
C14 2 pentanes - C(=O)(O)CCC1CC(C2C(C)CCC2)CC1 224,35 5,4612
C14 2 pentanes fused - C(=O)(O)CCCC1C2C(CC)CCC2CC1 224,35 4,777
C15 - propyl C(=O)(O)CCCCC(CCCCCC)CCC 242,41 6,3976
C15 1 pentane ethyl C(=O)(O)CCC1C(CC(CCC)CC)CCC1 240,39 6,1382
C15 2 pentanes - C(=O)(O)CCC1C(CC2CC(C)CC2)CCC1 238,37 5,9523
C15 2 hexanes fused   O=C(O)CCC1CCC2CCCC(CC)C2C1 238,37 5,2681
C15 3 pentanes fused - C(=O)(O)CCCC1C2C3C(CC2CC1)CCC3C 250,38 4,8156
C16 1 pentane - C(=O)(O)CCC1C(CCCCCCCC)CCC1 254,42 6,7028
C16 2 pentanes - C(=O)(O)CCC1CC(C2C(CCC)CCC2)CC1 252,4 6,4434
C16 2 hexane - C(=O)(O)C1C(CCC2C(C)CCCC2)CCCC1 252,4 6,4434
C16 3 pentanes of which 2 fused - C(=O)(O)CC1C2C(CC3CCCC3)CCC2CC1 250,38 5,5733
C17 1 pentane - C(=O)(O)CCC1C(CCCCCCCCC)CCC1 268,44 7,1939
C17 4 pentanes fused - C12(C3C(CC(=O)O)CCC3CC1)C1C(CCC1)CC2 262,4 5,1567
C18 1 hexane propyl C(=O)(O)CCC1C(CC(CCCC)CCC)CCCC1 282,47 7,6115
C18 3 pentanes of which 2 fused - C(=O)(O)CCCCC1C2C(C3CCCC3)CCC2CC1 278,44 6,5555
C19 2 pentanes fused ethyl C(=O)(O)CCCCC1C2C(C(CCC)CC)CCC2CC1 294,48 7,159
C19 2 pentane propyl C(=O)(O)CC1CC(CC(CCC2CCCC2)CCC)CC1 294,48 7,9167
C25 2 hexane propyl C(=O)(O)CCCC(CCC1C(CCC2C(C)CCCC2)CCCC1)CCC 378,64 10,7898
C30 2 hexane propyl C(=O)(O)CCC(CCCC1C(CCC2C(CCCCCC)CCCC2)CCCC1)CCC 448,78 13,2453
C30 3 hexane - C(=O)(O)CCCCCCC1C(CCC2C(CCCC3CCCCC3)CCCC2)CCCC1 446,76 13,1329
C30 3 hexanes fused ethyl-ethyl O=C(O)CCCCC(CC)CCC1CC2CCCC3CC(CCC(CC)CC)CC(C1)C23 446,76 12,2282
C30 2 hexanes fused 1 not propyl O=C(O)CCCC(CCC)CCCC1CCC2CC(CCC2C1)CC3CCCC(C)C3 432,74 11,8106
Conclusions:
The partition coefficient for different structures of naphthenic acids ranges from 2.05 to 13.25, for smaller and larger molecules respectively.
Executive summary:

The log Pow was estimated with KOWWIN version 1.68. This QSAR model is included in the EpiSuite programs developed by Syracuse Research Corporation for US-EPA. The calculated log Pow for different structures of naphthenic acids ranges from 2.05 to 13.25, for smaller and larger molecules respectively.

The most prominent group of naphthenic acids has 10 to 19 carbon numbers, for this group the logPow has a range from 3.76 to 7.92.

Endpoint:
partition coefficient
Type of information:
experimental study
Adequacy of study:
supporting study
Reliability:
4 (not assignable)
Rationale for reliability incl. deficiencies:
secondary literature
Principles of method if other than guideline:
Data were taken from a secondary source. Original source data were not available for review
GLP compliance:
not specified
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
>= 5

No further details given.

Conclusions:
The log Kow of Naphthenic Acid was reported to be >= 5 under the described conditions.

Description of key information

A range of 2.05 to 13.25 for the log Kow was obtained using the EPISuite modelling tool considered reliable with restrictions (K2) and assigned as key study. A not assignable (K4) literature reference reported a value of >5 (NIOSH, 2007) and was used as supporting study.

Key value for chemical safety assessment

Log Kow (Log Pow):
7.65

Additional information

Because naphthenic acids is a UVCB, physicochemical properties vary according to the proportions of the individual compounds in their composition. Therefore it is not possible to set a specific value for partition coefficient. To gain an understanding of partition coefficient characteristics of naphthenic acids, various hydrocarbon acidic structures which are shown to predominate in naphthenic acids were estimated for partition coefficient using the EPISuite computer model (US EPA, 2009). A range of values between 2.05 and 13.25 are reported. These results are supported by data found in secondary literature (log Pow>5).

Value used for CSA: >5