Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 209-812-1 | CAS number: 593-84-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2015-10-02 to 2015-10-26
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
- Report date:
- 2015
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Guanidinium thiocyanate
- EC Number:
- 209-812-1
- EC Name:
- Guanidinium thiocyanate
- Cas Number:
- 593-84-0
- Molecular formula:
- CH5N3.CHNS
- IUPAC Name:
- amino(imino)methanaminium thiocyanate
- Test material form:
- solid: bulk
Constituent 1
- Specific details on test material used for the study:
- Batch 1507511210
Method
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 liver microsomal fraction (phenobarbital and ß-naphthoflavone induced)
- Test concentrations with justification for top dose:
- 31.6, 100, 316, 1000, 2500, and 5000 µg/plate
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- sodium azide
- methylmethanesulfonate
- other: 4-nitro-o-phenylene-diamine, 2- aminoanthracene
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: experiment I in agar (plate incorporation); experiment II preincubation
DURATION
- Preincubation period: 60 min at 37 °C
- Exposure duration: at least 48 h at 37 °C
NUMBER OF REPLICATIONS: 3 plates per concentration and strain
DETERMINATION OF CYTOTOXICITY
- Method: background lawn, reduction in the number of revertants down to a mutation factor of approx. < 0.5 in relation to the solvent control.
OTHER: Colonies were counted using a ProtoCOL counter (Meintrup DWS Laborgeräte GmbH).
Tester strains TA 1535 and TA 1537 were counted manually. - Evaluation criteria:
- Validity:
A test is considered acceptable if for each strain:
- the bacteria demonstrate their typical responses to ampicillin
- the negative control plates with and without S9 mix are within laboratory historical ranges
- corresponding background growth on negative control, solvent control and test plates is observed
- the positive controls show a distinct enhancement of revertant rates over the control plate
- at least five different concentrations of each tester strain are analysable.
Evaluation of Mutagenicity:
A test item is considered as mutagenic if:
- a clear dose-related increase in the number of revertants occurs and/or
- a biologically relevant positive response for at least one of the dose groups occurs
in at least one tester strain with or without metabolic activation.
A biologically relevant increase is described as follows:
- if in tester strains TA98, TA100 and TA 102 the number of reversions is at least twice as high
- if in tester strains TA 1535 and TA 1537 the number of reversions is at least three times higher
than the reversion rate of the solvent control.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- True negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- True negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- True negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- True negative controls validity:
- not examined
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not examined
- True negative controls validity:
- not examined
- Positive controls validity:
- valid
Applicant's summary and conclusion
- Conclusions:
- Guanidine Thiocyanate is considered to be non-mutagenic in this bacterial reverse mutation assay.
- Executive summary:
In a reverse gene mutation assay in bacteria according to OECD guideline 471, strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 of S. typhimurium were exposed to Guanidinium Thiocyanate, at concentrations of 31.6, 100, 316, 1000, 2500, and 5000 µg/plate in two independent experiments. The first experiment was conducted as plate incorporation assay, the second as pre-incubation test, both in the absence and presence of a mammalian metabolic activation.
No precipitation of the test item was observed in any of the experiments. In experiment I no toxic effects were noted up to the highest concentration. In experiment II in some strains toxic effects were observed at 2500 and 5000 µg/plate.
No biological relevant increases in revertant colony numbers of any of the five tester strains were observed following treatment with Guanidine Thiocyanate at any concentration level, neither in the presence nor absence of metabolic activation in experiment I and II.
The reference mutagen induced a distinct increase of revertant colonies indicating the validity of the experiments.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.